BusinessDev's picture
Update app.py
f76e66c verified
raw
history blame
507 Bytes
import gradio as gr
from transformers import pipeline
model_id = "gpt2" # You can replace this with any model of your choice
generator = pipeline("text-generation", model=model_id)
# Define the function to process the input and generate text
def generate_text(prompt):
response = generator(prompt, max_length=100, num_return_sequences=1)
generated_text = response[0]['generated_text']
return generated_text
demo = gr.Interface(fn=generate_text, inputs="text", outputs="text")
demo.launch()