File size: 24,429 Bytes
3ed4749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a710e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed4749
6a710e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed4749
6a710e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed4749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a710e2
3ed4749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbdc19a
3ed4749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78f86c4
3ed4749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a710e2
3ed4749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Copyright (2025) [Seed-VL-Cookbook] Bytedance Seed
import os
import re
import cv2
import json
import time
import numpy as np
import gradio as gr
from infer import SeedVLInfer, ConversationModeI18N, ConversationModeCN
from visualizer import draw_boxes_points_with_labels

infer = SeedVLInfer(model_id=os.getenv('MODEL_ID'), api_key=os.getenv('API_KEY'))

label_translations = {
    "gr_chatinterface_ofl": {
        "English": "Chatbot",
        "中文": "对话界面"
    },
    "gr_chatinterface_ol": {
        "English": "Chatbot",
        "中文": "对话界面"
    },
    "gr_tab_ol": {
        "English": "Online",
        "中文": "在线模式"
    },
    "gr_tab_ofl": {
        "English": "Offline",
        "中文": "离线模式"
    },
    "gr_thinking": {
        "English": ConversationModeI18N.D,
        "中文": ConversationModeCN.D,
    },
    "gr_temperature": {
        "English": "Temperature",
        "中文": "温度系数"
    },
    "gr_webcam_image": {
        "English": "🤳 Open Webcam",
        "中文": "🤳 打开摄像头"
    },
    "gr_webcam_images": {
        "English": "📹 Recorded Frames",
        "中文": "📹 录制的视频帧"
    },
    "gr_chatinterface_ofl.textbox.placeholder": {
        "English":
        "Ask me anything. You can also drop in images and .mp4 videos.",
        "中文": "有什么想问的?支持上传图片和.mp4视频。"
    },
    "gr_chatinterface_ol.textbox.placeholder": {
        "English": "Ask me anything...",
        "中文": "有什么想问的?"
    },
    "gr_clear_button": {
        "English": "🧹 Clear History",
        "中文": "🧹 清除历史对话"
    }
}

def add_escape(text: str):
    return text.replace('<', '\<').replace('>', '\>')

def remove_escape(text: str):
    return text.replace('\<', '<').replace('\>', '>')

def plot_boxes_points_detections(image_path, message):
    detection_pattern = r'\[\s*{.*?}\s*\]'
    detection_matches = re.finditer(detection_pattern, message, flags=re.DOTALL)
    bboxes, categories = [], []
    for match in detection_matches:
        matched_str = match.group(0)
        detections = json.loads(matched_str)
        for detection in detections:
            cat, bbox_str = detection['category'], detection['bbox']
            bbox_str = bbox_str.replace('<bbox>', '').replace('</bbox>', '').replace('</bbox', '')
            bbox = list(map(float, bbox_str.split(' ')))
            bboxes.append(bbox)
            categories.append(cat)
    if not bboxes:
        box_pattern = r'<bbox>(\d+(?:\.\d+)?)\s+(\d+(?:\.\d+)?)\s+(\d+(?:\.\d+)?)\s+(\d+(?:\.\d+)?)</bbox>'
        box_matches = re.finditer(box_pattern, message)
        bboxes = [
            [float(match.group(1)), float(match.group(2)), 
            float(match.group(3)), float(match.group(4))]
            for match in box_matches
        ]
    
    points = []
    if not bboxes:
        point_pattern = r'<point>(\d+(?:\.\d+)?)\s+(\d+(?:\.\d+)?)</point>'
        point_matches = re.finditer(point_pattern, message)
        points = [
            [float(match.group(1)), float(match.group(2))]
            for match in point_matches
        ]

    if not bboxes and not points:
        return

    bboxes = np.array(bboxes, dtype='float') / 1000
    points = np.array(points, dtype='float') / 1000

    image = cv2.imread(image_path)
    h, w, c = image.shape
    if bboxes.size:
        bboxes[:, 0::2] *= w
        bboxes[:, 1::2] *= h
    if points.size:
        points[:, 0] *= w
        points[:, 1] *= h
    output_image = draw_boxes_points_with_labels(image, bboxes, points, categories)
    return output_image

def general_chat(inputs: dict, gr_history: list, infer_history: list,
                 if_thinking: bool, temperature: float, online: bool = False):
    if 'text' in inputs:
        inputs['text'] = remove_escape(inputs['text'])
    mode = ConversationModeI18N.D if if_thinking else ConversationModeI18N.G
    for response_text, infer_history, finished in infer(inputs=inputs,
                                              history=infer_history,
                                              mode=mode,
                                              temperature=temperature,
                                              online=online):
        if if_thinking:
            reasoning_text, response_text = response_text.split('</think>')
            reasoning_text = reasoning_text.lstrip('<think>')
            response_message = [{
                "role": "assistant",
                "content": add_escape(reasoning_text),
                'metadata': {
                    'title': '🤔 Thinking'
                }
            }, {
                "role": "assistant",
                "content": add_escape(response_text)
            }]
        else:
            response_message = [{
                "role": "assistant",
                "content": add_escape(response_text)
            }]
        if finished and len(inputs.get('files', [])) == 1 and not inputs['files'][0].endswith('.mp4'):
            image_path = inputs['files'][0]
            response_text = infer_history[-1]['content']
            try:
                if if_thinking:
                    reasoning_text, response_text = response_text.split('</think>')
                output_image = plot_boxes_points_detections(image_path, response_text)
                if output_image is not None:
                    response_message.append({
                        "role": "assistant",
                        "content": gr.Image(output_image),
                    })
            except Exception as e:
                print(e)
        yield response_message, infer_history

def online_record_chat(text: str, gr_history: list, gr_webcam_images: list,
                       gr_counter: int, infer_history: list, if_thinking: bool,
                       temperature: float):
    if not gr_webcam_images:
        gr_webcam_images = []
    gr_webcam_images = gr_webcam_images[gr_counter:]
    inputs = {'text': text, 'files': [webp for webp, _ in gr_webcam_images]}
    yield f'received {len(gr_webcam_images)} new frames, processing...', gr_counter + len(
        gr_webcam_images), infer_history
    for response_message, infer_history in general_chat(
            inputs, gr_history, infer_history, if_thinking, temperature, online=True):
        yield response_message, gr.skip(), infer_history

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            gr_title = gr.Markdown('# Seed1.5-VL')
            with gr.Row():
                gr.Markdown(
                    """
                    <div style="display:flex; flex-direction:column; gap:10px;">
                    <a
                        href="https://github.com/ByteDance-Seed/Seed1.5-VL"
                        target="_blank"
                        style="
                        display: inline-flex;
                        align-items: center;
                        gap: 8px;
                        white-space: nowrap;
                        text-decoration: none;
                        "
                    >
                        <img
                        src="https://cdn.jsdelivr.net/gh/devicons/devicon/icons/github/github-original.svg"
                        alt="GitHub"
                        width="24"
                        >
                        Seed1.5-VL Cookbook
                    </a>
                    </div>
                    """
                )
                gr.Markdown(
                    """
                    <div style="display:flex; flex-direction:column; gap:10px;">
                    <a
                        href="https://huggingface.co/papers/2505.07062"
                        target="_blank"
                        style="
                        display: inline-flex;
                        align-items: center;
                        gap: 8px;
                        white-space: nowrap;
                        text-decoration: none;
                        "
                    >
                        <img
                        src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg"
                        alt="Paper"
                        width="24"
                        >
                        Seed1.5-VL Paper
                    </a>
                    </div>
                    """,
                )
                gr.Markdown('')
                gr.Markdown('')
                gr.Markdown('')

        gr_lang_selector = gr.Dropdown(choices=["English", "中文"],
            value="English",
            label="🌐 English Interface/中文界面",
            interactive=True,
            min_width=400,
            scale=0)
            
    with gr.Tabs():
        with gr.Tab("Offline") as gr_tab_ofl:
            gr_infer_history = gr.State([])
            gr_thinking_hidden = gr.Checkbox(value=True, visible=False)
            gr_temperature_hidden = gr.Slider(minimum=0.0,
                                              maximum=2.0,
                                              step=0.1,
                                              value=0.0,
                                              interactive=True,
                                              visible=False)
            gr_chatinterface_ofl = gr.ChatInterface(
                fn=general_chat,
                type="messages",
                multimodal=True,
                chatbot=gr.Chatbot(height=600),
                textbox=gr.MultimodalTextbox(
                    file_count="multiple",
                    file_types=["image", ".mp4"],
                    sources=["upload"],
                    stop_btn=True,
                    placeholder=label_translations[
                        'gr_chatinterface_ofl.textbox.placeholder']['English'],
                ),
                additional_inputs=[
                    gr_infer_history, gr_thinking_hidden, gr_temperature_hidden
                ],
                additional_outputs=[gr_infer_history],
            )
            def add_escape_fn(inputs: dict):
                if inputs and 'text' in inputs:
                    inputs['text'] = add_escape(inputs['text'])
                return inputs
            gr_chatinterface_ofl.textbox.submit(
                fn=add_escape_fn,
                inputs=[gr_chatinterface_ofl.saved_input],
                outputs=[gr_chatinterface_ofl.saved_input]
            )
            gr.on(triggers=[gr_chatinterface_ofl.chatbot.clear],
                  fn=lambda: [],
                  outputs=[gr_infer_history])
            with gr.Row():
                gr_thinking_ofl = gr.Checkbox(
                    value=True,
                    label=label_translations['gr_thinking']['English'],
                )
                gr_thinking_ofl.change(lambda x: x,
                                        inputs=gr_thinking_ofl,
                                        outputs=gr_thinking_hidden)
                gr_temperature_ofl = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    value=0.0,
                    label=label_translations['gr_temperature']['English'],
                    interactive=True)
                gr_temperature_ofl.change(lambda x: x,
                                            inputs=gr_temperature_ofl,
                                            outputs=gr_temperature_hidden)
                gr_clear_button_ofl = gr.Button(value=label_translations['gr_clear_button']['English'])
                def clear_history_fn():
                    return None, [], [], [], []
                gr_clear_button_ofl.click(
                    fn=clear_history_fn, 
                    outputs=[
                        gr_chatinterface_ofl.conversation_id, 
                        gr_chatinterface_ofl.saved_conversations, 
                        gr_chatinterface_ofl.chatbot,
                        gr_chatinterface_ofl.chatbot_state, 
                        gr_infer_history
                    ]
                )
            with gr.Column(visible=True) as gr_examples_en:
                gr.Examples(
                    label='7 Examples: text, image, video, multiple images/videos, visual puzzle, points grounding, open-vocabulary detection.',
                    examples=[
                        {
                            "text": "Who are you?",
                            "files": []
                        },
                        {
                            "text": "Introduce this.",
                            "files": ["examples/bancopy.jpg"]
                        },
                        {
                            "text":
                            """Find Curry's "Good Night" celebration time.""",
                            "files":
                            ["examples/I7pTpMjqNRM_1080p_small.mp4"]
                        },
                        {
                            "text":
                            "Share your feelings.",
                            "files": [
                                "examples/newyork.jpg",
                                "examples/beijing.jpg"
                            ]
                        },
                        {
                            "text": "Look and answer.",
                            "files": ["examples/puzzle.jpg"]
                        },
                        {
                            "text": "Please point out all the hats on people's heads in the image, output concatenated point coordinates like <point>x y</point><point>x y</point>",
                            "files": ["examples/000000001000.jpeg"]
                        },
                        {
                            "text": """Please detect all plate, photo, kid, cup in the image, and output all objects in the JSON format, which is a list of dict like [{"category": category, "bbox": "<bbox>x1 y1 x2 y2</bbox>"}, {"category": category, "bbox": "<bbox>x1 y1 x2 y2</bbox>"}]""",
                            "files": ["examples/000000018380.jpeg"]
                        }
                    ],
                    inputs=[gr_chatinterface_ofl.textbox],
                )
            with gr.Column(visible=False) as gr_examples_cn:
                gr.Examples(
                    label='七个示例:文本,图像,视频,多个图像/视频,视觉解谜,坐标定位,开放式物体检测。',
                    examples=[
                        {
                            "text": "你是谁?",
                            "files": []
                        },
                        {
                            "text": "介绍一下。",
                            "files": ["examples/bancopy.jpg"]
                        },
                        {
                            "text":
                            "找到库里的“晚安”庆祝时间段。",
                            "files":
                            ["examples/I7pTpMjqNRM_1080p_small.mp4"]
                        },
                        {
                            "text":
                            "你有什么感想?",
                            "files": [
                                "examples/newyork.jpg",
                                "examples/beijing.jpg"
                            ]
                        },
                        {
                            "text": "看图回答。",
                            "files": ["examples/puzzle.jpg"]
                        },
                        {
                            "text": "请点出图像中所有戴在头上的帽子, 输出串联的点坐标<point>x y</point><point>x y</point>",
                            "files": ["examples/000000001000.jpeg"]
                        },
                        {
                            "text": """请检测图像中所有的盘子、照片、小孩和杯子。请以JSON格式输出一个由字典组成的列表,就像:[{"category": 类别, "bbox": "<bbox>x1 y1 x2 y2</bbox>"}, {"category": 类别, "bbox": "<bbox>x1 y1 x2 y2</bbox>"}]""",
                            "files": ["examples/000000018380.jpeg"]
                        }
                    ],
                    inputs=[gr_chatinterface_ofl.textbox],
                )
        with gr.Tab("Online") as gr_tab_ol:
            with gr.Row():
                with gr.Column(scale=1):
                    gr_infer_history_ol = gr.State([])
                    gr_thinking_hidden = gr.Checkbox(value=True, visible=False)
                    gr_temperature_hidden = gr.Slider(minimum=0.0,
                                                      maximum=2.0,
                                                      step=0.1,
                                                      value=1.0,
                                                      interactive=True,
                                                      visible=False)
                    with gr.Row():
                        with gr.Column(scale=1):
                            gr_webcam_image = gr.Image(
                                label=label_translations['gr_webcam_image']
                                ['English'],
                                sources="webcam",
                                height=250,
                                type='filepath')
                            gr_webcam_images = gr.Gallery(
                                label=label_translations['gr_webcam_images']
                                ['English'],
                                show_label=True,
                                format='webp',
                                columns=1,
                                height=250,
                                preview=True,
                                interactive=False)
                            gr_counter = gr.Number(value=0, visible=False)
                        with gr.Column(scale=3):
                            gr_chatinterface_ol = gr.ChatInterface(
                                fn=online_record_chat,
                                type="messages",
                                multimodal=False,
                                chatbot=gr.Chatbot(height=600),
                                textbox=gr.
                                Textbox(placeholder=label_translations[
                                    'gr_chatinterface_ol.textbox.placeholder']
                                        ['English'],
                                        submit_btn=True,
                                        stop_btn=True),
                                additional_inputs=[
                                    gr_webcam_images, gr_counter,
                                    gr_infer_history_ol, gr_thinking_hidden,
                                    gr_temperature_hidden
                                ],
                                additional_outputs=[
                                    gr_counter, gr_infer_history_ol
                                ],
                            )

                            def cache_webcam(recorded_image: str,
                                             recorded_images: list):
                                if not recorded_images:
                                    recorded_images = []
                                return recorded_images + [recorded_image]

                            gr_webcam_image.stream(
                                fn=cache_webcam,
                                inputs=[gr_webcam_image, gr_webcam_images],
                                outputs=[gr_webcam_images],
                                stream_every=1,
                                concurrency_limit=30,
                            )
                            with gr.Row():
                                gr_thinking_ol = gr.Checkbox(
                                    value=True,
                                    label=label_translations['gr_thinking']
                                    ['English'],
                                )
                                gr_thinking_ol.change(
                                    lambda x: x,
                                    inputs=gr_thinking_ol,
                                    outputs=gr_thinking_hidden)
                                gr_temperature_ol = gr.Slider(
                                    minimum=0.0,
                                    maximum=2.0,
                                    step=0.1,
                                    value=1.0,
                                    label=label_translations['gr_temperature']
                                    ['English'],
                                    interactive=True)
                                gr_temperature_ol.change(
                                    lambda x: x,
                                    inputs=gr_temperature_ol,
                                    outputs=gr_temperature_hidden)
                                gr_clear_button_ol = gr.Button(value=label_translations['gr_clear_button']['English'])
                                def clear_history_fn():
                                    return None, [], [], [], []
                                gr_clear_button_ol.click(
                                    fn=clear_history_fn, 
                                    outputs=[
                                        gr_chatinterface_ol.conversation_id, 
                                        gr_chatinterface_ol.saved_conversations, 
                                        gr_chatinterface_ol.chatbot,
                                        gr_chatinterface_ol.chatbot_state, 
                                        gr_infer_history_ol
                                    ]
                                )

    def update_lang(lang: str):
        return (
            gr.update(label=label_translations['gr_chatinterface_ofl'][lang]),
            gr.update(label=label_translations['gr_chatinterface_ol'][lang]),
            gr.update(placeholder=label_translations[
                'gr_chatinterface_ofl.textbox.placeholder'][lang]),
            gr.update(placeholder=label_translations[
                'gr_chatinterface_ol.textbox.placeholder'][lang]),
            gr.update(label=label_translations['gr_tab_ofl'][lang]),
            gr.update(label=label_translations['gr_tab_ol'][lang]),
            gr.update(label=label_translations['gr_thinking'][lang]),
            gr.update(label=label_translations['gr_thinking'][lang]),
            gr.update(label=label_translations['gr_temperature'][lang]),
            gr.update(label=label_translations['gr_temperature'][lang]),
            gr.update(visible=lang == 'English'),
            gr.update(visible=lang != 'English'),
            gr.update(label=label_translations['gr_webcam_image'][lang]),
            gr.update(label=label_translations['gr_webcam_images'][lang]),
            gr.update(value=label_translations['gr_clear_button'][lang]),
            gr.update(value=label_translations['gr_clear_button'][lang]),
        )

    gr_lang_selector.change(fn=update_lang,
                            inputs=[gr_lang_selector],
                            outputs=[
                                gr_chatinterface_ofl.chatbot,
                                gr_chatinterface_ol.chatbot,
                                gr_chatinterface_ofl.textbox,
                                gr_chatinterface_ol.textbox,
                                gr_tab_ofl,
                                gr_tab_ol,
                                gr_thinking_ofl,
                                gr_thinking_ol,
                                gr_temperature_ofl,
                                gr_temperature_ol,
                                gr_examples_en,
                                gr_examples_cn,
                                gr_webcam_image,
                                gr_webcam_images,
                                gr_clear_button_ofl,
                                gr_clear_button_ol,
                            ])
demo.queue(default_concurrency_limit=100, max_size=100).launch(share=True,
                                                               max_threads=100,
                                                               ssr_mode=False)