Spaces:
Running
Running
File size: 11,758 Bytes
3ed4749 1bcebf0 3ed4749 1bcebf0 3ed4749 1bcebf0 3ed4749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
# Copyright (2025) [Seed-VL-Cookbook] Bytedance Seed
import cv2
import json
import time
import math
import base64
import requests
import torch
import decord
import numpy as np
from PIL import Image, ImageSequence
from torchvision.io import read_image, encode_jpeg
from torchvision.transforms.functional import resize, pil_to_tensor
from torchvision.transforms import InterpolationMode
class ConversationModeI18N:
G = "General"
D = "Deep Thinking"
class ConversationModeCN:
G = "常规"
D = "深度思考"
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def ceil_by_factor(number: int, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
def floor_by_factor(number: int, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def get_resized_hw_for_Navit(
height: int,
width: int,
min_pixels: int,
max_pixels: int,
max_ratio: int = 200,
factor: int = 28,
):
if max(height, width) / min(height, width) > max_ratio:
raise ValueError(
f"absolute aspect ratio must be smaller than {max_ratio}, got {max(height, width) / min(height, width)}"
)
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, factor)
w_bar = floor_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, factor)
w_bar = ceil_by_factor(width * beta, factor)
return int(h_bar), int(w_bar)
class SeedVLInfer:
def __init__(
self,
model_id: str,
api_key: str,
base_url: str = 'https://ark.cn-beijing.volces.com/api/v3/chat/completions',
min_pixels: int = 4 * 28 * 28,
max_pixels: int = 5120 * 28 * 28,
video_sampling_strategy: dict = {
'sampling_fps':
1,
'min_n_frames':
16,
'max_video_length':
81920,
'max_pixels_choices': [
640 * 28 * 28, 512 * 28 * 28, 384 * 28 * 28, 256 * 28 * 28,
160 * 28 * 28, 128 * 28 * 28
],
'use_timestamp':
True,
},
):
self.base_url = base_url
self.api_key = api_key
self.model_id = model_id
self.min_pixels = min_pixels
self.max_pixels = max_pixels
self.sampling_fps = video_sampling_strategy.get('sampling_fps', 1)
self.min_n_frames = video_sampling_strategy.get('min_n_frames', 16)
self.max_video_length = video_sampling_strategy.get(
'max_video_length', 81920)
self.max_pixels_choices = video_sampling_strategy.get(
'max_pixels_choices', [
640 * 28 * 28, 512 * 28 * 28, 384 * 28 * 28, 256 * 28 * 28,
160 * 28 * 28, 128 * 28 * 28
])
self.use_timestamp = video_sampling_strategy.get('use_timestamp', True)
def preprocess_video(self, video_path: str):
try:
video_reader = decord.VideoReader(video_path, num_threads=2)
fps = video_reader.get_avg_fps()
except decord._ffi.base.DECORDError:
video_reader = [
frame.convert('RGB')
for frame in ImageSequence.Iterator(Image.open(video_path))
]
fps = 1
length = len(video_reader)
n_frames = min(
max(math.ceil(length / fps * self.sampling_fps),
self.min_n_frames), length)
frame_indices = np.linspace(0, length - 1,
n_frames).round().astype(int).tolist()
max_pixels = self.max_pixels
for round_idx, max_pixels in enumerate(self.max_pixels_choices):
is_last_round = round_idx == len(self.max_pixels_choices) - 1
if len(frame_indices
) * max_pixels / 28 / 28 > self.max_video_length:
if is_last_round:
max_frame_num = int(self.max_video_length / max_pixels *
28 * 28)
select_ids = np.linspace(
0,
len(frame_indices) - 1,
max_frame_num).round().astype(int).tolist()
frame_indices = [
frame_indices[select_id] for select_id in select_ids
]
else:
continue
else:
break
if hasattr(video_reader, "get_batch"):
video_clip = torch.from_numpy(
video_reader.get_batch(frame_indices).asnumpy()).permute(
0, 3, 1, 2)
else:
video_clip_array = torch.stack(
[np.array(video_reader[i]) for i in frame_indices], dim=0)
video_clip = torch.from_numpy(video_clip_array).permute(0, 3, 1, 2)
height, width = video_clip.shape[-2:]
resized_height, resized_width = get_resized_hw_for_Navit(
height,
width,
min_pixels=self.min_pixels,
max_pixels=max_pixels,
)
resized_video_clip = resize(video_clip,
(resized_height, resized_width),
interpolation=InterpolationMode.BICUBIC,
antialias=True)
if self.use_timestamp:
resized_video_clip = [
(round(i / fps, 1), f)
for i, f in zip(frame_indices, resized_video_clip)
]
return resized_video_clip
def preprocess_streaming_frame(self, frame: torch.Tensor):
height, width = frame.shape[-2:]
resized_height, resized_width = get_resized_hw_for_Navit(
height,
width,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels_choices[0],
)
resized_frame = resize(frame[None], (resized_height, resized_width),
interpolation=InterpolationMode.BICUBIC,
antialias=True)[0]
return resized_frame
def encode_image(self, image: torch.Tensor) -> str:
if image.shape[0] == 4:
image = image[:3]
encoded = encode_jpeg(image)
return base64.b64encode(encoded.numpy()).decode('utf-8')
def construct_messages(self,
inputs: dict,
streaming_timestamp: int = None,
online: bool = False) -> list[dict]:
content = []
for i, path in enumerate(inputs.get('files', [])):
if path.endswith('.mp4'):
video = self.preprocess_video(video_path=path)
for frame in video:
if self.use_timestamp:
timestamp, frame = frame
content.append({
"type": "text",
"text": f'[{timestamp} second]',
})
content.append({
"type": "image_url",
"image_url": {
"url":
f"data:image/jpeg;base64,{self.encode_image(frame)}",
"detail": "high"
},
})
else:
try:
image = read_image(path, "RGB")
except:
try:
image = pil_to_tensor(Image.open(path).convert('RGB'))
except:
image = torch.from_numpy(
cv2.cvtColor(
cv2.imread(path),
cv2.COLOR_BGR2RGB
)
).permute(2, 0, 1)
if online and path.endswith('.webp'):
streaming_timestamp = i
if streaming_timestamp is not None:
image = self.preprocess_streaming_frame(frame=image)
content.append({
"type": "image_url",
"image_url": {
"url":
f"data:image/jpeg;base64,{self.encode_image(image)}",
"detail": "high"
},
})
if streaming_timestamp is not None:
content.insert(-1, {
"type": "text",
"text": f'[{streaming_timestamp} second]',
})
query = inputs.get('text', '')
if query:
content.append({
"type": "text",
"text": query,
})
messages = [{
"role": "user",
"content": content,
}]
return messages
def request(self,
messages,
thinking: bool = True,
temperature: float = 1.0):
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"model": self.model_id,
"messages": messages,
"stream": True,
"thinking": {
"type": "enabled" if thinking else "disabled",
},
"temperature": temperature,
}
for _ in range(10):
try:
requested = requests.post(self.base_url,
headers=headers,
json=payload,
stream=True,
timeout=600)
break
except Exception as e:
time.sleep(0.1)
print(e)
content, reasoning_content = '', ''
for line in requested.iter_lines():
if not line:
continue
if line.startswith(b'data:'):
data = line[len("data: "):]
if data == b"[DONE]":
yield content, reasoning_content, True
break
delta = json.loads(data)['choices'][0]['delta']
content += delta['content']
reasoning_content += delta.get('reasoning_content', '')
yield content, reasoning_content, False
def __call__(self,
inputs: dict,
history: list[dict] = [],
mode: str = ConversationModeI18N.D,
temperature: float = 1.0,
online: bool = False):
messages = self.construct_messages(inputs=inputs, online=online)
updated_history = history + messages
for response, reasoning, finished in self.request(
messages=updated_history,
thinking=mode == ConversationModeI18N.D,
temperature=temperature):
if mode == ConversationModeI18N.D:
response = '<think>' + reasoning + '</think>' + response
yield response, updated_history + [{'role': 'assistant', 'content': response}], finished |