File size: 16,102 Bytes
dfb1341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import os
import tempfile
import time
import uuid

import cv2
import gradio as gr
import pymupdf
import spaces
import torch
from gradio_pdf import PDF
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel

from utils.utils import prepare_image, parse_layout_string, process_coordinates, ImageDimensions

# 读取外部CSS文件
def load_css():
    css_path = os.path.join(os.path.dirname(__file__), "static", "styles.css")
    if os.path.exists(css_path):
        with open(css_path, "r", encoding="utf-8") as f:
            return f.read()
    return ""

# 全局变量存储模型
model = None
processor = None
tokenizer = None

# 自动初始化模型
@spaces.GPU
def initialize_model():
    """初始化 Hugging Face 模型"""
    global model, processor, tokenizer
    
    if model is None:
        logger.info("Loading DOLPHIN model...")
        model_id = "ByteDance/Dolphin"
        
        # 加载处理器和模型
        processor = AutoProcessor.from_pretrained(model_id)
        model = VisionEncoderDecoderModel.from_pretrained(model_id)
        model.eval()
        
        # 设置设备和精度
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)
        model = model.half()  # 使用半精度
        
        # 设置tokenizer
        tokenizer = processor.tokenizer
        
        logger.info(f"Model loaded successfully on {device}")
    
    return "Model ready"

# 启动时自动初始化模型
logger.info("Initializing model at startup...")
try:
    initialize_model()
    logger.info("Model initialization completed")
except Exception as e:
    logger.error(f"Model initialization failed: {e}")
    # 模型将在首次使用时重新尝试初始化

# 模型推理函数
@spaces.GPU
def model_chat(prompt, image):
    """使用模型进行推理"""
    global model, processor, tokenizer
    
    # 确保模型已初始化
    if model is None:
        initialize_model()
    
    # 检查是否为批处理
    is_batch = isinstance(image, list)
    
    if not is_batch:
        images = [image]
        prompts = [prompt]
    else:
        images = image
        prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
    
    # 准备图像
    device = "cuda" if torch.cuda.is_available() else "cpu"
    batch_inputs = processor(images, return_tensors="pt", padding=True)
    batch_pixel_values = batch_inputs.pixel_values.half().to(device)
    
    # 准备提示
    prompts = [f"<s>{p} <Answer/>" for p in prompts]
    batch_prompt_inputs = tokenizer(
        prompts,
        add_special_tokens=False,
        return_tensors="pt"
    )

    batch_prompt_ids = batch_prompt_inputs.input_ids.to(device)
    batch_attention_mask = batch_prompt_inputs.attention_mask.to(device)
    
    # 生成文本
    outputs = model.generate(
        pixel_values=batch_pixel_values,
        decoder_input_ids=batch_prompt_ids,
        decoder_attention_mask=batch_attention_mask,
        min_length=1,
        max_length=4096,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
        use_cache=True,
        bad_words_ids=[[tokenizer.unk_token_id]],
        return_dict_in_generate=True,
        do_sample=False,
        num_beams=1,
        repetition_penalty=1.1
    )
    
    # 处理输出
    sequences = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
    
    # 清理提示文本
    results = []
    for i, sequence in enumerate(sequences):
        cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
        results.append(cleaned)
        
    # 返回单个结果或批处理结果
    if not is_batch:
        return results[0]
    return results

# 处理元素批次
@spaces.GPU
def process_element_batch(elements, prompt, max_batch_size=16):
    """处理同类型元素的批次"""
    results = []
    
    # 确定批次大小
    batch_size = min(len(elements), max_batch_size)
    
    # 分批处理
    for i in range(0, len(elements), batch_size):
        batch_elements = elements[i:i+batch_size]
        crops_list = [elem["crop"] for elem in batch_elements]
        
        # 使用相同的提示
        prompts_list = [prompt] * len(crops_list)
        
        # 批量推理
        batch_results = model_chat(prompts_list, crops_list)
        
        # 添加结果
        for j, result in enumerate(batch_results):
            elem = batch_elements[j]
            results.append({
                "label": elem["label"],
                "bbox": elem["bbox"],
                "text": result.strip(),
                "reading_order": elem["reading_order"],
            })
    
    return results

# 清理临时文件
def cleanup_temp_file(file_path):
    """安全地删除临时文件"""
    try:
        if file_path and os.path.exists(file_path):
            os.unlink(file_path)
    except Exception as e:
        logger.warning(f"Failed to cleanup temp file {file_path}: {e}")

def to_pdf(file_path):
    """将输入文件转换为PDF格式"""
    if file_path is None:
        return None
        
    with pymupdf.open(file_path) as f:
        if f.is_pdf:
            return file_path
        else:
            pdf_bytes = f.convert_to_pdf()
            # 使用临时文件而不是保存到磁盘
            with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_file:
                tmp_file.write(pdf_bytes)
                return tmp_file.name

@spaces.GPU(duration=120)
def process_document(file_path):
    """处理文档的主要函数 - 集成完整的推理逻辑"""
    if file_path is None:
        return "", "", {}, {}
    
    start_time = time.time()
    original_file_path = file_path
    
    # 确保模型已初始化
    if model is None:
        initialize_model()
    
    # 转换为PDF(如果需要)
    converted_file_path = to_pdf(file_path)
    temp_file_created = converted_file_path != original_file_path
    
    try:
        logger.info(f"Processing document: {file_path}")
        
        # 处理页面
        recognition_results = process_page(converted_file_path)
        
        # 生成Markdown内容
        md_content = generate_markdown(recognition_results)
        
        # 计算处理时间
        processing_time = time.time() - start_time
        
        debug_info = {
            "original_file": original_file_path,
            "converted_file": converted_file_path,
            "temp_file_created": temp_file_created,
            "status": "success",
            "processing_time": f"{processing_time:.2f}s",
            "total_elements": len(recognition_results)
        }
        
        processing_data = {
            "pages": [{"elements": recognition_results}],
            "total_elements": len(recognition_results),
            "processing_time": f"{processing_time:.2f}s"
        }
        
        logger.info(f"Document processed successfully in {processing_time:.2f}s")
        return md_content, md_content, processing_data, debug_info
    
    except Exception as e:
        logger.error(f"Error processing document: {str(e)}")
        error_info = {
            "original_file": original_file_path,
            "converted_file": converted_file_path,
            "temp_file_created": temp_file_created,
            "status": "error",
            "error": str(e)
        }
        return f"# 处理错误\n\n处理文档时发生错误: {str(e)}", "", {}, error_info
    
    finally:
        # 清理临时文件
        if temp_file_created:
            cleanup_temp_file(converted_file_path)

def process_page(image_path):
    """处理单页文档"""
    # 阶段1: 页面级布局解析
    pil_image = Image.open(image_path).convert("RGB")
    layout_output = model_chat("Parse the reading order of this document.", pil_image)

    # 阶段2: 元素级内容解析
    padded_image, dims = prepare_image(pil_image)
    recognition_results = process_elements(layout_output, padded_image, dims)

    return recognition_results

def process_elements(layout_results, padded_image, dims, max_batch_size=16):
    """解析所有文档元素"""
    layout_results = parse_layout_string(layout_results)

    # 分别存储不同类型的元素
    text_elements = []  # 文本元素
    table_elements = []  # 表格元素
    figure_results = []  # 图像元素(无需处理)
    previous_box = None
    reading_order = 0

    # 收集要处理的元素并按类型分组
    for bbox, label in layout_results:
        try:
            # 调整坐标
            x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
                bbox, padded_image, dims, previous_box
            )

            # 裁剪并解析元素
            cropped = padded_image[y1:y2, x1:x2]
            if cropped.size > 0:
                if label == "fig":
                    # 对于图像区域,直接添加空文本结果
                    figure_results.append(
                        {
                            "label": label,
                            "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                            "text": "",
                            "reading_order": reading_order,
                        }
                    )
                else:
                    # 准备元素进行解析
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    element_info = {
                        "crop": pil_crop,
                        "label": label,
                        "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                        "reading_order": reading_order,
                    }
                    
                    # 按类型分组
                    if label == "tab":
                        table_elements.append(element_info)
                    else:  # 文本元素
                        text_elements.append(element_info)

            reading_order += 1

        except Exception as e:
            logger.error(f"Error processing bbox with label {label}: {str(e)}")
            continue

    # 初始化结果列表
    recognition_results = figure_results.copy()
    
    # 处理文本元素(批量)
    if text_elements:
        text_results = process_element_batch(text_elements, "Read text in the image.", max_batch_size)
        recognition_results.extend(text_results)
    
    # 处理表格元素(批量)
    if table_elements:
        table_results = process_element_batch(table_elements, "Parse the table in the image.", max_batch_size)
        recognition_results.extend(table_results)

    # 按阅读顺序排序
    recognition_results.sort(key=lambda x: x.get("reading_order", 0))

    return recognition_results

def generate_markdown(recognition_results):
    """从识别结果生成Markdown内容"""
    markdown_parts = []
    
    for result in recognition_results:
        text = result.get("text", "").strip()
        label = result.get("label", "")
        
        if text:
            if label == "tab":
                # 表格内容
                markdown_parts.append(f"\n{text}\n")
            else:
                # 普通文本内容
                markdown_parts.append(text)
    
    return "\n\n".join(markdown_parts)

# LaTeX 渲染配置
latex_delimiters = [
    {"left": "$$", "right": "$$", "display": True},
    {"left": "$", "right": "$", "display": False},
    {"left": "\\[", "right": "\\]", "display": True},
    {"left": "\\(", "right": "\\)", "display": False},
]

# 加载自定义CSS
custom_css = load_css()

# 读取页面头部
with open("header.html", "r", encoding="utf-8") as file:
    header = file.read()

# 创建 Gradio 界面
with gr.Blocks(css=custom_css, title="Dolphin Document Parser") as demo:
    gr.HTML(header)

    with gr.Row():
        # 侧边栏 - 文件上传和控制
        with gr.Column(scale=1, elem_classes="sidebar"):
            # 文件上传组件
            file = gr.File(
                label="Choose PDF or image file", 
                file_types=[".pdf", ".png", ".jpeg", ".jpg"], 
                elem_id="file-upload"
            )

            gr.HTML("选择文件后,点击处理按钮开始解析<br>After selecting the file, click the Process button to start parsing")

            with gr.Row(elem_classes="action-buttons"):
                submit_btn = gr.Button("处理文档/Process Document", variant="primary")
                clear_btn = gr.ClearButton(value="清空/Clear")
            
            # 处理状态显示
            status_display = gr.Textbox(
                label="Processing Status", 
                value="Ready to process documents", 
                interactive=False,
                max_lines=2
            )

            # 示例文件
            example_root = os.path.join(os.path.dirname(__file__), "examples")
            if os.path.exists(example_root):
                gr.HTML("示例文件/Example Files")
                example_files = [
                    os.path.join(example_root, f) 
                    for f in os.listdir(example_root) 
                    if not f.endswith(".py")
                ]

                examples = gr.Examples(
                    examples=example_files, 
                    inputs=file, 
                    examples_per_page=10, 
                    elem_id="example-files"
                )

        # 主体内容区域
        with gr.Column(scale=7):
            with gr.Row(elem_classes="main-content"):
                # 预览面板
                with gr.Column(scale=1, elem_classes="preview-panel"):
                    gr.HTML("文件预览/Preview")
                    pdf_show = PDF(label="", interactive=False, visible=True, height=600)
                    debug_output = gr.JSON(label="Debug Info", height=100)

                # 输出面板
                with gr.Column(scale=1, elem_classes="output-panel"):
                    with gr.Tabs():
                        with gr.Tab("Markdown [Render]"):
                            md_render = gr.Markdown(
                                label="",
                                height=700,
                                show_copy_button=True,
                                latex_delimiters=latex_delimiters,
                                line_breaks=True,
                            )
                        with gr.Tab("Markdown [Content]"):
                            md_content = gr.TextArea(lines=30, show_copy_button=True)
                        with gr.Tab("Processing Data"):
                            json_output = gr.JSON(label="", height=700)

    # 事件处理
    file.change(fn=to_pdf, inputs=file, outputs=pdf_show)
    
    # 文档处理
    def process_with_status(file_path):
        """处理文档并更新状态"""
        if file_path is None:
            return "", "", {}, {}, "Please select a file first"
        
        # 更新状态为处理中
        status = "Processing document..."
        
        # 执行文档处理
        md_render_result, md_content_result, json_result, debug_result = process_document(file_path)
        
        # 更新完成状态
        if "错误" in md_render_result:
            status = "Processing failed - see debug info"
        else:
            status = "Processing completed successfully"
        
        return md_render_result, md_content_result, json_result, debug_result, status
    
    submit_btn.click(
        fn=process_with_status,
        inputs=[file],
        outputs=[md_render, md_content, json_output, debug_output, status_display],
    )
    
    # 清空所有内容
    def reset_all():
        return None, None, "", "", {}, {}, "Ready to process documents"
    
    clear_btn.click(
        fn=reset_all,
        inputs=[],
        outputs=[file, pdf_show, md_render, md_content, json_output, debug_output, status_display]
    )

# 启动应用
if __name__ == "__main__":
    demo.launch()