File size: 23,999 Bytes
d26b33a dfb1341 ab40c3e dfb1341 19d9428 d26b33a dfb1341 d26b33a dfb1341 d26b33a 19d9428 d26b33a 19d9428 d26b33a dfb1341 19d9428 d26b33a dfb1341 d26b33a 19d9428 d26b33a dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 ab40c3e dfb1341 ab40c3e dfb1341 8d317f9 dfb1341 19d9428 dfb1341 d26b33a 19d9428 d26b33a 19d9428 d26b33a cc1d913 19d9428 cc1d913 19d9428 cc1d913 19d9428 d26b33a dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 19d9428 dfb1341 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
import io
import os
import tempfile
import time
import uuid
import cv2
import gradio as gr
import pymupdf
import spaces
import torch
from gradio_pdf import PDF
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
from utils.utils import prepare_image, parse_layout_string, process_coordinates, ImageDimensions
from utils.markdown_utils import MarkdownConverter
# 读取外部CSS文件
def load_css():
css_path = os.path.join(os.path.dirname(__file__), "static", "styles.css")
if os.path.exists(css_path):
with open(css_path, "r", encoding="utf-8") as f:
return f.read()
return ""
# 全局变量存储模型
model = None
processor = None
tokenizer = None
# 自动初始化模型
@spaces.GPU
def initialize_model():
"""初始化 Hugging Face 模型"""
global model, processor, tokenizer
if model is None:
logger.info("Loading DOLPHIN model...")
model_id = "ByteDance/Dolphin"
# 加载处理器和模型
processor = AutoProcessor.from_pretrained(model_id)
model = VisionEncoderDecoderModel.from_pretrained(model_id)
model.eval()
# 设置设备和精度
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model = model.half() # 使用半精度
# 设置tokenizer
tokenizer = processor.tokenizer
logger.info(f"Model loaded successfully on {device}")
return "Model ready"
# 启动时自动初始化模型
logger.info("Initializing model at startup...")
try:
initialize_model()
logger.info("Model initialization completed")
except Exception as e:
logger.error(f"Model initialization failed: {e}")
# 模型将在首次使用时重新尝试初始化
# 模型推理函数
@spaces.GPU
def model_chat(prompt, image):
"""使用模型进行推理"""
global model, processor, tokenizer
# 确保模型已初始化
if model is None:
initialize_model()
# 检查是否为批处理
is_batch = isinstance(image, list)
if not is_batch:
images = [image]
prompts = [prompt]
else:
images = image
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
# 准备图像
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_inputs = processor(images, return_tensors="pt", padding=True)
batch_pixel_values = batch_inputs.pixel_values.half().to(device)
# 准备提示
prompts = [f"<s>{p} <Answer/>" for p in prompts]
batch_prompt_inputs = tokenizer(
prompts,
add_special_tokens=False,
return_tensors="pt"
)
batch_prompt_ids = batch_prompt_inputs.input_ids.to(device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(device)
# 生成文本
outputs = model.generate(
pixel_values=batch_pixel_values,
decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask,
min_length=1,
max_length=4096,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
repetition_penalty=1.1
)
# 处理输出
sequences = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
# 清理提示文本
results = []
for i, sequence in enumerate(sequences):
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
results.append(cleaned)
# 返回单个结果或批处理结果
if not is_batch:
return results[0]
return results
# 处理元素批次
@spaces.GPU
def process_element_batch(elements, prompt, max_batch_size=16):
"""处理同类型元素的批次"""
results = []
# 确定批次大小
batch_size = min(len(elements), max_batch_size)
# 分批处理
for i in range(0, len(elements), batch_size):
batch_elements = elements[i:i+batch_size]
crops_list = [elem["crop"] for elem in batch_elements]
# 使用相同的提示
prompts_list = [prompt] * len(crops_list)
# 批量推理
batch_results = model_chat(prompts_list, crops_list)
# 添加结果
for j, result in enumerate(batch_results):
elem = batch_elements[j]
results.append({
"label": elem["label"],
"bbox": elem["bbox"],
"text": result.strip(),
"reading_order": elem["reading_order"],
})
return results
# 清理临时文件
def cleanup_temp_file(file_path):
"""安全地删除临时文件"""
try:
if file_path and os.path.exists(file_path):
os.unlink(file_path)
except Exception as e:
logger.warning(f"Failed to cleanup temp file {file_path}: {e}")
def convert_to_image(file_path, target_size=896, page_num=0):
"""将输入文件转换为图像格式,长边调整到指定尺寸"""
if file_path is None:
return None
try:
# 检查文件扩展名
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
# PDF文件:转换指定页面为图像
logger.info(f"Converting PDF page {page_num} to image: {file_path}")
doc = pymupdf.open(file_path)
# 检查页面数量
if page_num >= len(doc):
page_num = 0 # 如果页面超出范围,使用第一页
page = doc[page_num]
# 计算缩放比例,使长边为target_size
rect = page.rect
scale = target_size / max(rect.width, rect.height)
# 渲染页面为图像
mat = pymupdf.Matrix(scale, scale)
pix = page.get_pixmap(matrix=mat)
# 转换为PIL图像
img_data = pix.tobytes("png")
pil_image = Image.open(io.BytesIO(img_data))
# 保存为临时文件
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
pil_image.save(tmp_file.name, "PNG")
doc.close()
return tmp_file.name
else:
# 图像文件:调整尺寸(忽略page_num参数)
logger.info(f"Resizing image: {file_path}")
pil_image = Image.open(file_path).convert("RGB")
# 计算新尺寸,保持长宽比
w, h = pil_image.size
if max(w, h) > target_size:
if w > h:
new_w, new_h = target_size, int(h * target_size / w)
else:
new_w, new_h = int(w * target_size / h), target_size
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
# 如果已是图像且尺寸合适,直接返回原文件
if max(w, h) <= target_size:
return file_path
# 保存调整后的图像
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
pil_image.save(tmp_file.name, "PNG")
return tmp_file.name
except Exception as e:
logger.error(f"Error converting file to image: {e}")
return file_path # 如果转换失败,返回原文件
def get_pdf_page_count(file_path):
"""获取PDF文件的页数"""
try:
if file_path and file_path.lower().endswith('.pdf'):
doc = pymupdf.open(file_path)
page_count = len(doc)
doc.close()
return page_count
else:
return 1 # 非PDF文件视为单页
except Exception as e:
logger.error(f"Error getting PDF page count: {e}")
return 1
def convert_all_pdf_pages_to_images(file_path, target_size=896):
"""将PDF的所有页面转换为图像列表"""
if file_path is None:
return []
try:
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
doc = pymupdf.open(file_path)
image_paths = []
for page_num in range(len(doc)):
page = doc[page_num]
# 计算缩放比例
rect = page.rect
scale = target_size / max(rect.width, rect.height)
# 渲染页面为图像
mat = pymupdf.Matrix(scale, scale)
pix = page.get_pixmap(matrix=mat)
# 转换为PIL图像
img_data = pix.tobytes("png")
pil_image = Image.open(io.BytesIO(img_data))
# 保存为临时文件
with tempfile.NamedTemporaryFile(suffix=f"_page_{page_num}.png", delete=False) as tmp_file:
pil_image.save(tmp_file.name, "PNG")
image_paths.append(tmp_file.name)
doc.close()
return image_paths
else:
# 非PDF文件,返回调整后的单个图像
converted_path = convert_to_image(file_path, target_size)
return [converted_path] if converted_path else []
except Exception as e:
logger.error(f"Error converting PDF pages to images: {e}")
return []
def to_pdf(file_path):
"""为了兼容性保留的函数,现在调用convert_to_image"""
return convert_to_image(file_path)
@spaces.GPU(duration=120)
def process_document(file_path):
"""处理文档的主要函数 - 支持多页PDF处理"""
if file_path is None:
return "", "", []
start_time = time.time()
original_file_path = file_path
# 确保模型已初始化
if model is None:
initialize_model()
try:
# 获取页数
page_count = get_pdf_page_count(file_path)
logger.info(f"Document has {page_count} page(s)")
# 将所有页面转换为图像
image_paths = convert_all_pdf_pages_to_images(file_path)
if not image_paths:
raise Exception("Failed to convert document to images")
# 记录需要清理的临时文件
temp_files_created = []
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
temp_files_created.extend(image_paths)
elif len(image_paths) == 1 and image_paths[0] != original_file_path:
temp_files_created.append(image_paths[0])
all_results = []
md_contents = []
# 逐页处理
for page_idx, image_path in enumerate(image_paths):
logger.info(f"Processing page {page_idx + 1}/{len(image_paths)}")
# 处理当前页面
recognition_results = process_page(image_path)
# 生成当前页的markdown内容
page_md_content = generate_markdown(recognition_results)
md_contents.append(page_md_content)
# 保存当前页的处理数据
page_data = {
"page": page_idx + 1,
"elements": recognition_results,
"total_elements": len(recognition_results)
}
all_results.append(page_data)
# 计算处理时间
processing_time = time.time() - start_time
# 合并所有页面的markdown内容
if len(md_contents) > 1:
final_md_content = "\n\n---\n\n".join(md_contents)
else:
final_md_content = md_contents[0] if md_contents else ""
# 在结果数组最后添加总体信息
summary_data = {
"summary": True,
"total_pages": len(image_paths),
"total_elements": sum(len(page["elements"]) for page in all_results),
"processing_time": f"{processing_time:.2f}s",
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}
all_results.append(summary_data)
logger.info(f"Document processed successfully in {processing_time:.2f}s - {len(image_paths)} page(s)")
return final_md_content, final_md_content, all_results
except Exception as e:
logger.error(f"Error processing document: {str(e)}")
error_data = [{
"error": True,
"message": str(e),
"original_file": original_file_path,
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
}]
return f"# 处理错误\n\n处理文档时发生错误: {str(e)}", "", error_data
finally:
# 清理临时文件
if 'temp_files_created' in locals():
for temp_file in temp_files_created:
if temp_file and os.path.exists(temp_file):
cleanup_temp_file(temp_file)
def process_page(image_path):
"""处理单页文档"""
# 阶段1: 页面级布局解析
pil_image = Image.open(image_path).convert("RGB")
layout_output = model_chat("Parse the reading order of this document.", pil_image)
# 阶段2: 元素级内容解析
padded_image, dims = prepare_image(pil_image)
recognition_results = process_elements(layout_output, padded_image, dims)
return recognition_results
def process_elements(layout_results, padded_image, dims, max_batch_size=16):
"""解析所有文档元素"""
layout_results = parse_layout_string(layout_results)
# 分别存储不同类型的元素
text_elements = [] # 文本元素
table_elements = [] # 表格元素
figure_results = [] # 图像元素(无需处理)
previous_box = None
reading_order = 0
# 收集要处理的元素并按类型分组
for bbox, label in layout_results:
try:
# 调整坐标
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
bbox, padded_image, dims, previous_box
)
# 裁剪并解析元素
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0:
if label == "fig":
# 对于图像区域,提取图像的base64编码
try:
# 将裁剪的图像转换为PIL图像
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
# 转换为base64
import io
import base64
buffered = io.BytesIO()
pil_crop.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
figure_results.append(
{
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"text": img_base64, # 存储base64编码而不是空字符串
"reading_order": reading_order,
}
)
except Exception as e:
logger.error(f"Error encoding figure to base64: {e}")
figure_results.append(
{
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"text": "", # 如果编码失败,使用空字符串
"reading_order": reading_order,
}
)
else:
# 准备元素进行解析
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
element_info = {
"crop": pil_crop,
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
# 按类型分组
if label == "tab":
table_elements.append(element_info)
else: # 文本元素
text_elements.append(element_info)
reading_order += 1
except Exception as e:
logger.error(f"Error processing bbox with label {label}: {str(e)}")
continue
# 初始化结果列表
recognition_results = figure_results.copy()
# 处理文本元素(批量)
if text_elements:
text_results = process_element_batch(text_elements, "Read text in the image.", max_batch_size)
recognition_results.extend(text_results)
# 处理表格元素(批量)
if table_elements:
table_results = process_element_batch(table_elements, "Parse the table in the image.", max_batch_size)
recognition_results.extend(table_results)
# 按阅读顺序排序
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
return recognition_results
def generate_markdown(recognition_results):
"""从识别结果生成Markdown内容"""
# 使用MarkdownConverter来处理所有类型的内容,包括图片
converter = MarkdownConverter()
return converter.convert(recognition_results)
# LaTeX 渲染配置
latex_delimiters = [
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
{"left": "\\[", "right": "\\]", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
]
# 加载自定义CSS
custom_css = load_css()
# 读取页面头部
with open("header.html", "r", encoding="utf-8") as file:
header = file.read()
# 创建 Gradio 界面
with gr.Blocks(css=custom_css, title="Dolphin Document Parser") as demo:
gr.HTML(header)
with gr.Row():
# 侧边栏 - 文件上传和控制
with gr.Column(scale=1, elem_classes="sidebar"):
# 文件上传组件
file = gr.File(
label="Choose PDF or image file",
file_types=[".pdf", ".png", ".jpeg", ".jpg"],
elem_id="file-upload"
)
with gr.Row(elem_classes="action-buttons"):
submit_btn = gr.Button("提交/Submit", variant="primary")
clear_btn = gr.ClearButton(value="清空/Clear")
# 示例文件
example_root = os.path.join(os.path.dirname(__file__), "examples")
if os.path.exists(example_root):
gr.HTML("示例文件/Example Files")
example_files = [
os.path.join(example_root, f)
for f in os.listdir(example_root)
if not f.endswith(".py")
]
examples = gr.Examples(
examples=example_files,
inputs=file,
examples_per_page=10,
elem_id="example-files"
)
# 主体内容区域
with gr.Column(scale=7):
with gr.Row(elem_classes="main-content"):
# 预览面板
with gr.Column(scale=1, elem_classes="preview-panel"):
gr.HTML("文件预览/Preview")
pdf_show = PDF(label="", interactive=False, visible=True, height=600)
# 输出面板
with gr.Column(scale=1, elem_classes="output-panel"):
with gr.Tabs():
with gr.Tab("Markdown [Render]"):
md_render = gr.Markdown(
label="",
height=700,
show_copy_button=True,
latex_delimiters=latex_delimiters,
line_breaks=True,
)
with gr.Tab("Markdown [Content]"):
md_content = gr.TextArea(lines=30, show_copy_button=True)
with gr.Tab("Json [Content]"):
json_output = gr.JSON(label="", height=700)
# 事件处理 - 预览文件
def preview_file(file_path):
"""预览上传的文件,对图像先调整尺寸再转换为PDF格式"""
if file_path is None:
return None
try:
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
# PDF文件直接返回
return file_path
else:
# 图像文件:先调整尺寸再转换为PDF
logger.info(f"Resizing image for preview: {file_path}")
# 使用PIL打开图像并调整尺寸
pil_image = Image.open(file_path).convert("RGB")
w, h = pil_image.size
# 如果图像很大,调整到合适预览尺寸(长边最大896像素)
max_preview_size = 896
if max(w, h) > max_preview_size:
if w > h:
new_w, new_h = max_preview_size, int(h * max_preview_size / w)
else:
new_w, new_h = int(w * max_preview_size / h), max_preview_size
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
logger.info(f"Resized from {w}x{h} to {new_w}x{new_h} for preview")
# 将调整后的图像转换为PDF
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_file:
pil_image.save(tmp_file.name, "PDF")
return tmp_file.name
except Exception as e:
logger.error(f"Error creating preview: {e}")
# 出错时使用原来的方法
try:
with pymupdf.open(file_path) as f:
if f.is_pdf:
return file_path
else:
pdf_bytes = f.convert_to_pdf()
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_file:
tmp_file.write(pdf_bytes)
return tmp_file.name
except Exception as e2:
logger.error(f"Fallback preview method also failed: {e2}")
return None
file.change(fn=preview_file, inputs=file, outputs=pdf_show)
# 文档处理
def process_with_status(file_path):
"""处理文档并更新状态"""
if file_path is None:
return "", "", []
# 执行文档处理
md_render_result, md_content_result, json_result = process_document(file_path)
return md_render_result, md_content_result, json_result
submit_btn.click(
fn=process_with_status,
inputs=[file],
outputs=[md_render, md_content, json_output],
)
# 清空所有内容
def reset_all():
return None, None, "", "", []
clear_btn.click(
fn=reset_all,
inputs=[],
outputs=[file, pdf_show, md_render, md_content, json_output]
)
# 启动应用
if __name__ == "__main__":
demo.launch() |