File size: 10,147 Bytes
dfb1341 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
"""
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""
import argparse
import glob
import os
import cv2
import torch
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
from utils.utils import *
class DOLPHIN:
def __init__(self, model_id_or_path):
"""Initialize the Hugging Face model
Args:
model_id_or_path: Path to local model or Hugging Face model ID
"""
# Load model from local path or Hugging Face hub
self.processor = AutoProcessor.from_pretrained(model_id_or_path)
self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path)
self.model.eval()
# Set device and precision
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.model = self.model.half() # Always use half precision by default
# set tokenizer
self.tokenizer = self.processor.tokenizer
def chat(self, prompt, image):
"""Process an image or batch of images with the given prompt(s)
Args:
prompt: Text prompt or list of prompts to guide the model
image: PIL Image or list of PIL Images to process
Returns:
Generated text or list of texts from the model
"""
# Check if we're dealing with a batch
is_batch = isinstance(image, list)
if not is_batch:
# Single image, wrap it in a list for consistent processing
images = [image]
prompts = [prompt]
else:
# Batch of images
images = image
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
# Prepare image
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
batch_pixel_values = batch_inputs.pixel_values.half().to(self.device)
# Prepare prompt
prompts = [f"<s>{p} <Answer/>" for p in prompts]
batch_prompt_inputs = self.tokenizer(
prompts,
add_special_tokens=False,
return_tensors="pt"
)
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
# Generate text
outputs = self.model.generate(
pixel_values=batch_pixel_values,
decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask,
min_length=1,
max_length=4096,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[self.tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
repetition_penalty=1.1
)
# Process output
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
# Clean prompt text from output
results = []
for i, sequence in enumerate(sequences):
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
results.append(cleaned)
# Return a single result for single image input
if not is_batch:
return results[0]
return results
def process_page(image_path, model, save_dir, max_batch_size=None):
"""Parse document images with two stages"""
# Stage 1: Page-level layout and reading order parsing
pil_image = Image.open(image_path).convert("RGB")
layout_output = model.chat("Parse the reading order of this document.", pil_image)
# Stage 2: Element-level content parsing
padded_image, dims = prepare_image(pil_image)
recognition_results = process_elements(layout_output, padded_image, dims, model, max_batch_size)
# Save outputs
json_path = save_outputs(recognition_results, image_path, save_dir)
return json_path, recognition_results
def process_elements(layout_results, padded_image, dims, model, max_batch_size=None):
"""Parse all document elements with parallel decoding"""
layout_results = parse_layout_string(layout_results)
# Store text and table elements separately
text_elements = [] # Text elements
table_elements = [] # Table elements
figure_results = [] # Image elements (no processing needed)
previous_box = None
reading_order = 0
# Collect elements to process and group by type
for bbox, label in layout_results:
try:
# Adjust coordinates
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
bbox, padded_image, dims, previous_box
)
# Crop and parse element
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0:
if label == "fig":
# For figure regions, add empty text result immediately
figure_results.append(
{
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"text": "",
"reading_order": reading_order,
}
)
else:
# Prepare element for parsing
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
element_info = {
"crop": pil_crop,
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
# Group by type
if label == "tab":
table_elements.append(element_info)
else: # Text elements
text_elements.append(element_info)
reading_order += 1
except Exception as e:
print(f"Error processing bbox with label {label}: {str(e)}")
continue
# Initialize results list
recognition_results = figure_results.copy()
# Process text elements (in batches)
if text_elements:
text_results = process_element_batch(text_elements, model, "Read text in the image.", max_batch_size)
recognition_results.extend(text_results)
# Process table elements (in batches)
if table_elements:
table_results = process_element_batch(table_elements, model, "Parse the table in the image.", max_batch_size)
recognition_results.extend(table_results)
# Sort elements by reading order
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
return recognition_results
def process_element_batch(elements, model, prompt, max_batch_size=None):
"""Process elements of the same type in batches"""
results = []
# Determine batch size
batch_size = len(elements)
if max_batch_size is not None and max_batch_size > 0:
batch_size = min(batch_size, max_batch_size)
# Process in batches
for i in range(0, len(elements), batch_size):
batch_elements = elements[i:i+batch_size]
crops_list = [elem["crop"] for elem in batch_elements]
# Use the same prompt for all elements in the batch
prompts_list = [prompt] * len(crops_list)
# Batch inference
batch_results = model.chat(prompts_list, crops_list)
# Add results
for j, result in enumerate(batch_results):
elem = batch_elements[j]
results.append({
"label": elem["label"],
"bbox": elem["bbox"],
"text": result.strip(),
"reading_order": elem["reading_order"],
})
return results
def main():
parser = argparse.ArgumentParser(description="Document processing tool using DOLPHIN model")
parser.add_argument("--input_path", type=str, default="./demo", help="Path to input image or directory of images")
parser.add_argument(
"--save_dir",
type=str,
default=None,
help="Directory to save parsing results (default: same as input directory)",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=16,
help="Maximum number of document elements to parse in a single batch (default: 16)",
)
args = parser.parse_args()
# Load Model
model = DOLPHIN("ByteDance/Dolphin")
# Collect Document Images
if os.path.isdir(args.input_path):
image_files = []
for ext in [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG"]:
image_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}")))
image_files = sorted(image_files)
else:
if not os.path.exists(args.input_path):
raise FileNotFoundError(f"Input path {args.input_path} does not exist")
image_files = [args.input_path]
save_dir = args.save_dir or (
args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path)
)
setup_output_dirs(save_dir)
total_samples = len(image_files)
print(f"\nTotal samples to process: {total_samples}")
# Process All Document Images
for image_path in image_files:
print(f"\nProcessing {image_path}")
try:
json_path, recognition_results = process_page(
image_path=image_path,
model=model,
save_dir=save_dir,
max_batch_size=args.max_batch_size,
)
print(f"Processing completed. Results saved to {save_dir}")
except Exception as e:
print(f"Error processing {image_path}: {str(e)}")
continue
if __name__ == "__main__":
main() |