File size: 12,752 Bytes
dfb1341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
""" 
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""

import copy
import json
import os
import re
from dataclasses import dataclass
from typing import List, Tuple

import albumentations as alb
import cv2
import numpy as np
from albumentations.pytorch import ToTensorV2
from PIL import Image
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision.transforms.functional import resize

from utils.markdown_utils import MarkdownConverter


def alb_wrapper(transform):
    def f(im):
        return transform(image=np.asarray(im))["image"]

    return f


test_transform = alb_wrapper(
    alb.Compose(
        [
            alb.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
            ToTensorV2(),
        ]
    )
)


def check_coord_valid(x1, y1, x2, y2, image_size=None, abs_coord=True):
    # print(f"check_coord_valid: {x1}, {y1}, {x2}, {y2}, {image_size}, {abs_coord}")
    if x2 <= x1 or y2 <= y1:
        return False, f"[{x1}, {y1}, {x2}, {y2}]"
    if x1 < 0 or y1 < 0:
        return False, f"[{x1}, {y1}, {x2}, {y2}]"
    if not abs_coord:
        if x2 > 1 or y2 > 1:
            return False, f"[{x1}, {y1}, {x2}, {y2}]"
    elif image_size is not None: # has image size
        if x2 > image_size[0] or y2 > image_size[1]:
            return False, f"[{x1}, {y1}, {x2}, {y2}]"
    return True, None

    
def adjust_box_edges(image, boxes: List[List[float]], max_pixels=15, threshold=0.2):
    """
    Image: cv2.image object, or Path
    Input: boxes: list of boxes [[x1, y1, x2, y2]]. Using absolute coordinates.
    """
    if isinstance(image, str):
        image = cv2.imread(image)
    img_h, img_w = image.shape[:2]
    new_boxes = []
    for box in boxes:
        best_box = copy.deepcopy(box)

        def check_edge(img, current_box, i, is_vertical):
            edge = current_box[i]
            gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)

            if is_vertical:
                line = binary[current_box[1] : current_box[3] + 1, edge]
            else:
                line = binary[edge, current_box[0] : current_box[2] + 1]

            transitions = np.abs(np.diff(line))
            return np.sum(transitions) / len(transitions)

        # Only widen the box
        edges = [(0, -1, True), (2, 1, True), (1, -1, False), (3, 1, False)]

        current_box = copy.deepcopy(box)
        # make sure the box is within the image
        current_box[0] = min(max(current_box[0], 0), img_w - 1)
        current_box[1] = min(max(current_box[1], 0), img_h - 1)
        current_box[2] = min(max(current_box[2], 0), img_w - 1)
        current_box[3] = min(max(current_box[3], 0), img_h - 1)

        for i, direction, is_vertical in edges:
            best_score = check_edge(image, current_box, i, is_vertical)
            if best_score <= threshold:
                continue
            for step in range(max_pixels):
                current_box[i] += direction
                if i == 0 or i == 2:
                    current_box[i] = min(max(current_box[i], 0), img_w - 1)
                else:
                    current_box[i] = min(max(current_box[i], 0), img_h - 1)
                score = check_edge(image, current_box, i, is_vertical)

                if score < best_score:
                    best_score = score
                    best_box = copy.deepcopy(current_box)

                if score <= threshold:
                    break
        new_boxes.append(best_box)

    return new_boxes


def parse_layout_string(bbox_str):
    """Parse layout string using regular expressions"""
    pattern = r"\[(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+)\]\s*(\w+)"
    matches = re.finditer(pattern, bbox_str)

    parsed_results = []
    for match in matches:
        coords = [float(match.group(i)) for i in range(1, 5)]
        label = match.group(5).strip()
        parsed_results.append((coords, label))

    return parsed_results


@dataclass
class ImageDimensions:
    """Class to store image dimensions"""
    original_w: int
    original_h: int
    padded_w: int
    padded_h: int


def map_to_original_coordinates(x1, y1, x2, y2, dims: ImageDimensions) -> Tuple[int, int, int, int]:
    """Map coordinates from padded image back to original image
    
    Args:
        x1, y1, x2, y2: Coordinates in padded image
        dims: Image dimensions object
        
    Returns:
        tuple: (x1, y1, x2, y2) coordinates in original image
    """
    try:
        # Calculate padding offsets
        top = (dims.padded_h - dims.original_h) // 2
        left = (dims.padded_w - dims.original_w) // 2
        
        # Map back to original coordinates
        orig_x1 = max(0, x1 - left)
        orig_y1 = max(0, y1 - top)
        orig_x2 = min(dims.original_w, x2 - left)
        orig_y2 = min(dims.original_h, y2 - top)
        
        # Ensure we have a valid box (width and height > 0)
        if orig_x2 <= orig_x1:
            orig_x2 = min(orig_x1 + 1, dims.original_w)
        if orig_y2 <= orig_y1:
            orig_y2 = min(orig_y1 + 1, dims.original_h)
            
        return int(orig_x1), int(orig_y1), int(orig_x2), int(orig_y2)
    except Exception as e:
        print(f"map_to_original_coordinates error: {str(e)}")
        # Return safe coordinates
        return 0, 0, min(100, dims.original_w), min(100, dims.original_h)


def map_to_relevant_coordinates(abs_coords, dims: ImageDimensions):
    """
        From absolute coordinates to relevant coordinates
        e.g. [100, 100, 200, 200] -> [0.1, 0.2, 0.3, 0.4]
    """
    try:
        x1, y1, x2, y2 = abs_coords
        return round(x1 / dims.original_w, 3), round(y1 / dims.original_h, 3), round(x2 / dims.original_w, 3), round(y2 / dims.original_h, 3)
    except Exception as e:
        print(f"map_to_relevant_coordinates error: {str(e)}")
        return 0.0, 0.0, 1.0, 1.0  # Return full image coordinates


def process_coordinates(coords, padded_image, dims: ImageDimensions, previous_box=None):
    """Process and adjust coordinates
    
    Args:
        coords: Normalized coordinates [x1, y1, x2, y2]
        padded_image: Padded image
        dims: Image dimensions object
        previous_box: Previous box coordinates for overlap adjustment
    
    Returns:
        tuple: (x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, new_previous_box)
    """
    try:
        # Convert normalized coordinates to absolute coordinates
        x1, y1 = int(coords[0] * dims.padded_w), int(coords[1] * dims.padded_h)
        x2, y2 = int(coords[2] * dims.padded_w), int(coords[3] * dims.padded_h)
        
        # Ensure coordinates are within image bounds before adjustment
        x1 = max(0, min(x1, dims.padded_w - 1))
        y1 = max(0, min(y1, dims.padded_h - 1))
        x2 = max(0, min(x2, dims.padded_w))
        y2 = max(0, min(y2, dims.padded_h))
        
        # Ensure width and height are at least 1 pixel
        if x2 <= x1:
            x2 = min(x1 + 1, dims.padded_w)
        if y2 <= y1:
            y2 = min(y1 + 1, dims.padded_h)
        
        # Extend box boundaries
        new_boxes = adjust_box_edges(padded_image, [[x1, y1, x2, y2]])
        x1, y1, x2, y2 = new_boxes[0]
        
        # Ensure coordinates are still within image bounds after adjustment
        x1 = max(0, min(x1, dims.padded_w - 1))
        y1 = max(0, min(y1, dims.padded_h - 1))
        x2 = max(0, min(x2, dims.padded_w))
        y2 = max(0, min(y2, dims.padded_h))
        
        # Ensure width and height are at least 1 pixel after adjustment
        if x2 <= x1:
            x2 = min(x1 + 1, dims.padded_w)
        if y2 <= y1:
            y2 = min(y1 + 1, dims.padded_h)
        
        # Check for overlap with previous box and adjust
        if previous_box is not None:
            prev_x1, prev_y1, prev_x2, prev_y2 = previous_box
            if (x1 < prev_x2 and x2 > prev_x1) and (y1 < prev_y2 and y2 > prev_y1):
                y1 = prev_y2
                # Ensure y1 is still valid
                y1 = min(y1, dims.padded_h - 1)
                # Make sure y2 is still greater than y1
                if y2 <= y1:
                    y2 = min(y1 + 1, dims.padded_h)
        
        # Update previous box
        new_previous_box = [x1, y1, x2, y2]

        # Map to original coordinates
        orig_x1, orig_y1, orig_x2, orig_y2 = map_to_original_coordinates(
            x1, y1, x2, y2, dims
        )
        
        return x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, new_previous_box
    except Exception as e:
        print(f"process_coordinates error: {str(e)}")
        # Return safe values
        orig_x1, orig_y1, orig_x2, orig_y2 = 0, 0, min(100, dims.original_w), min(100, dims.original_h)
        return 0, 0, 100, 100, orig_x1, orig_y1, orig_x2, orig_y2, [0, 0, 100, 100]


def prepare_image(image) -> Tuple[np.ndarray, ImageDimensions]:
    """Load and prepare image with padding while maintaining aspect ratio
    
    Args:
        image: PIL image
        
    Returns:
        tuple: (padded_image, image_dimensions)
    """
    try:
        # Convert PIL image to OpenCV format
        image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        original_h, original_w = image.shape[:2]

        # Calculate padding to make square image
        max_size = max(original_h, original_w)
        top = (max_size - original_h) // 2
        bottom = max_size - original_h - top
        left = (max_size - original_w) // 2
        right = max_size - original_w - left

        # Apply padding
        padded_image = cv2.copyMakeBorder(image, top, bottom, left, right,
                                cv2.BORDER_CONSTANT, value=(0, 0, 0))

        padded_h, padded_w = padded_image.shape[:2]
        
        dimensions = ImageDimensions(
            original_w=original_w,
            original_h=original_h,
            padded_w=padded_w,
            padded_h=padded_h
        )
        
        return padded_image, dimensions
    except Exception as e:
        print(f"prepare_image error: {str(e)}")
        # Create a minimal valid image and dimensions
        h, w = image.height, image.width
        dimensions = ImageDimensions(
            original_w=w,
            original_h=h,
            padded_w=w,
            padded_h=h
        )
        # Return a black image of the same size
        return np.zeros((h, w, 3), dtype=np.uint8), dimensions




def setup_output_dirs(save_dir):
    """Create necessary output directories"""
    os.makedirs(save_dir, exist_ok=True)
    os.makedirs(os.path.join(save_dir, "markdown"), exist_ok=True)
    os.makedirs(os.path.join(save_dir, "recognition_json"), exist_ok=True)


def save_outputs(recognition_results, image_path, save_dir):
    """Save JSON and markdown outputs"""
    basename = os.path.splitext(os.path.basename(image_path))[0]

    # Save JSON file
    json_path = os.path.join(save_dir, "recognition_json", f"{basename}.json")
    with open(json_path, "w", encoding="utf-8") as f:
        json.dump(recognition_results, f, ensure_ascii=False, indent=2)

    # Generate and save markdown file
    markdown_converter = MarkdownConverter()
    markdown_content = markdown_converter.convert(recognition_results)
    markdown_path = os.path.join(save_dir, "markdown", f"{basename}.md")
    with open(markdown_path, "w", encoding="utf-8") as f:
        f.write(markdown_content)

    return json_path


def crop_margin(img: Image.Image) -> Image.Image:
    """Crop margins from image"""
    try:
        width, height = img.size
        if width == 0 or height == 0:
            print("Warning: Image has zero width or height")
            return img
            
        data = np.array(img.convert("L"))
        data = data.astype(np.uint8)
        max_val = data.max()
        min_val = data.min()
        if max_val == min_val:
            return img
        data = (data - min_val) / (max_val - min_val) * 255
        gray = 255 * (data < 200).astype(np.uint8)

        coords = cv2.findNonZero(gray)  # Find all non-zero points (text)
        if coords is None:
            return img
        a, b, w, h = cv2.boundingRect(coords)  # Find minimum spanning bounding box
        
        # Ensure crop coordinates are within image bounds
        a = max(0, a)
        b = max(0, b)
        w = min(w, width - a)
        h = min(h, height - b)
        
        # Only crop if we have a valid region
        if w > 0 and h > 0:
            return img.crop((a, b, a + w, b + h))
        return img
    except Exception as e:
        print(f"crop_margin error: {str(e)}")
        return img  # Return original image on error