File size: 12,752 Bytes
dfb1341 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
"""
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""
import copy
import json
import os
import re
from dataclasses import dataclass
from typing import List, Tuple
import albumentations as alb
import cv2
import numpy as np
from albumentations.pytorch import ToTensorV2
from PIL import Image
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision.transforms.functional import resize
from utils.markdown_utils import MarkdownConverter
def alb_wrapper(transform):
def f(im):
return transform(image=np.asarray(im))["image"]
return f
test_transform = alb_wrapper(
alb.Compose(
[
alb.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
ToTensorV2(),
]
)
)
def check_coord_valid(x1, y1, x2, y2, image_size=None, abs_coord=True):
# print(f"check_coord_valid: {x1}, {y1}, {x2}, {y2}, {image_size}, {abs_coord}")
if x2 <= x1 or y2 <= y1:
return False, f"[{x1}, {y1}, {x2}, {y2}]"
if x1 < 0 or y1 < 0:
return False, f"[{x1}, {y1}, {x2}, {y2}]"
if not abs_coord:
if x2 > 1 or y2 > 1:
return False, f"[{x1}, {y1}, {x2}, {y2}]"
elif image_size is not None: # has image size
if x2 > image_size[0] or y2 > image_size[1]:
return False, f"[{x1}, {y1}, {x2}, {y2}]"
return True, None
def adjust_box_edges(image, boxes: List[List[float]], max_pixels=15, threshold=0.2):
"""
Image: cv2.image object, or Path
Input: boxes: list of boxes [[x1, y1, x2, y2]]. Using absolute coordinates.
"""
if isinstance(image, str):
image = cv2.imread(image)
img_h, img_w = image.shape[:2]
new_boxes = []
for box in boxes:
best_box = copy.deepcopy(box)
def check_edge(img, current_box, i, is_vertical):
edge = current_box[i]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
if is_vertical:
line = binary[current_box[1] : current_box[3] + 1, edge]
else:
line = binary[edge, current_box[0] : current_box[2] + 1]
transitions = np.abs(np.diff(line))
return np.sum(transitions) / len(transitions)
# Only widen the box
edges = [(0, -1, True), (2, 1, True), (1, -1, False), (3, 1, False)]
current_box = copy.deepcopy(box)
# make sure the box is within the image
current_box[0] = min(max(current_box[0], 0), img_w - 1)
current_box[1] = min(max(current_box[1], 0), img_h - 1)
current_box[2] = min(max(current_box[2], 0), img_w - 1)
current_box[3] = min(max(current_box[3], 0), img_h - 1)
for i, direction, is_vertical in edges:
best_score = check_edge(image, current_box, i, is_vertical)
if best_score <= threshold:
continue
for step in range(max_pixels):
current_box[i] += direction
if i == 0 or i == 2:
current_box[i] = min(max(current_box[i], 0), img_w - 1)
else:
current_box[i] = min(max(current_box[i], 0), img_h - 1)
score = check_edge(image, current_box, i, is_vertical)
if score < best_score:
best_score = score
best_box = copy.deepcopy(current_box)
if score <= threshold:
break
new_boxes.append(best_box)
return new_boxes
def parse_layout_string(bbox_str):
"""Parse layout string using regular expressions"""
pattern = r"\[(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+)\]\s*(\w+)"
matches = re.finditer(pattern, bbox_str)
parsed_results = []
for match in matches:
coords = [float(match.group(i)) for i in range(1, 5)]
label = match.group(5).strip()
parsed_results.append((coords, label))
return parsed_results
@dataclass
class ImageDimensions:
"""Class to store image dimensions"""
original_w: int
original_h: int
padded_w: int
padded_h: int
def map_to_original_coordinates(x1, y1, x2, y2, dims: ImageDimensions) -> Tuple[int, int, int, int]:
"""Map coordinates from padded image back to original image
Args:
x1, y1, x2, y2: Coordinates in padded image
dims: Image dimensions object
Returns:
tuple: (x1, y1, x2, y2) coordinates in original image
"""
try:
# Calculate padding offsets
top = (dims.padded_h - dims.original_h) // 2
left = (dims.padded_w - dims.original_w) // 2
# Map back to original coordinates
orig_x1 = max(0, x1 - left)
orig_y1 = max(0, y1 - top)
orig_x2 = min(dims.original_w, x2 - left)
orig_y2 = min(dims.original_h, y2 - top)
# Ensure we have a valid box (width and height > 0)
if orig_x2 <= orig_x1:
orig_x2 = min(orig_x1 + 1, dims.original_w)
if orig_y2 <= orig_y1:
orig_y2 = min(orig_y1 + 1, dims.original_h)
return int(orig_x1), int(orig_y1), int(orig_x2), int(orig_y2)
except Exception as e:
print(f"map_to_original_coordinates error: {str(e)}")
# Return safe coordinates
return 0, 0, min(100, dims.original_w), min(100, dims.original_h)
def map_to_relevant_coordinates(abs_coords, dims: ImageDimensions):
"""
From absolute coordinates to relevant coordinates
e.g. [100, 100, 200, 200] -> [0.1, 0.2, 0.3, 0.4]
"""
try:
x1, y1, x2, y2 = abs_coords
return round(x1 / dims.original_w, 3), round(y1 / dims.original_h, 3), round(x2 / dims.original_w, 3), round(y2 / dims.original_h, 3)
except Exception as e:
print(f"map_to_relevant_coordinates error: {str(e)}")
return 0.0, 0.0, 1.0, 1.0 # Return full image coordinates
def process_coordinates(coords, padded_image, dims: ImageDimensions, previous_box=None):
"""Process and adjust coordinates
Args:
coords: Normalized coordinates [x1, y1, x2, y2]
padded_image: Padded image
dims: Image dimensions object
previous_box: Previous box coordinates for overlap adjustment
Returns:
tuple: (x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, new_previous_box)
"""
try:
# Convert normalized coordinates to absolute coordinates
x1, y1 = int(coords[0] * dims.padded_w), int(coords[1] * dims.padded_h)
x2, y2 = int(coords[2] * dims.padded_w), int(coords[3] * dims.padded_h)
# Ensure coordinates are within image bounds before adjustment
x1 = max(0, min(x1, dims.padded_w - 1))
y1 = max(0, min(y1, dims.padded_h - 1))
x2 = max(0, min(x2, dims.padded_w))
y2 = max(0, min(y2, dims.padded_h))
# Ensure width and height are at least 1 pixel
if x2 <= x1:
x2 = min(x1 + 1, dims.padded_w)
if y2 <= y1:
y2 = min(y1 + 1, dims.padded_h)
# Extend box boundaries
new_boxes = adjust_box_edges(padded_image, [[x1, y1, x2, y2]])
x1, y1, x2, y2 = new_boxes[0]
# Ensure coordinates are still within image bounds after adjustment
x1 = max(0, min(x1, dims.padded_w - 1))
y1 = max(0, min(y1, dims.padded_h - 1))
x2 = max(0, min(x2, dims.padded_w))
y2 = max(0, min(y2, dims.padded_h))
# Ensure width and height are at least 1 pixel after adjustment
if x2 <= x1:
x2 = min(x1 + 1, dims.padded_w)
if y2 <= y1:
y2 = min(y1 + 1, dims.padded_h)
# Check for overlap with previous box and adjust
if previous_box is not None:
prev_x1, prev_y1, prev_x2, prev_y2 = previous_box
if (x1 < prev_x2 and x2 > prev_x1) and (y1 < prev_y2 and y2 > prev_y1):
y1 = prev_y2
# Ensure y1 is still valid
y1 = min(y1, dims.padded_h - 1)
# Make sure y2 is still greater than y1
if y2 <= y1:
y2 = min(y1 + 1, dims.padded_h)
# Update previous box
new_previous_box = [x1, y1, x2, y2]
# Map to original coordinates
orig_x1, orig_y1, orig_x2, orig_y2 = map_to_original_coordinates(
x1, y1, x2, y2, dims
)
return x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, new_previous_box
except Exception as e:
print(f"process_coordinates error: {str(e)}")
# Return safe values
orig_x1, orig_y1, orig_x2, orig_y2 = 0, 0, min(100, dims.original_w), min(100, dims.original_h)
return 0, 0, 100, 100, orig_x1, orig_y1, orig_x2, orig_y2, [0, 0, 100, 100]
def prepare_image(image) -> Tuple[np.ndarray, ImageDimensions]:
"""Load and prepare image with padding while maintaining aspect ratio
Args:
image: PIL image
Returns:
tuple: (padded_image, image_dimensions)
"""
try:
# Convert PIL image to OpenCV format
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
original_h, original_w = image.shape[:2]
# Calculate padding to make square image
max_size = max(original_h, original_w)
top = (max_size - original_h) // 2
bottom = max_size - original_h - top
left = (max_size - original_w) // 2
right = max_size - original_w - left
# Apply padding
padded_image = cv2.copyMakeBorder(image, top, bottom, left, right,
cv2.BORDER_CONSTANT, value=(0, 0, 0))
padded_h, padded_w = padded_image.shape[:2]
dimensions = ImageDimensions(
original_w=original_w,
original_h=original_h,
padded_w=padded_w,
padded_h=padded_h
)
return padded_image, dimensions
except Exception as e:
print(f"prepare_image error: {str(e)}")
# Create a minimal valid image and dimensions
h, w = image.height, image.width
dimensions = ImageDimensions(
original_w=w,
original_h=h,
padded_w=w,
padded_h=h
)
# Return a black image of the same size
return np.zeros((h, w, 3), dtype=np.uint8), dimensions
def setup_output_dirs(save_dir):
"""Create necessary output directories"""
os.makedirs(save_dir, exist_ok=True)
os.makedirs(os.path.join(save_dir, "markdown"), exist_ok=True)
os.makedirs(os.path.join(save_dir, "recognition_json"), exist_ok=True)
def save_outputs(recognition_results, image_path, save_dir):
"""Save JSON and markdown outputs"""
basename = os.path.splitext(os.path.basename(image_path))[0]
# Save JSON file
json_path = os.path.join(save_dir, "recognition_json", f"{basename}.json")
with open(json_path, "w", encoding="utf-8") as f:
json.dump(recognition_results, f, ensure_ascii=False, indent=2)
# Generate and save markdown file
markdown_converter = MarkdownConverter()
markdown_content = markdown_converter.convert(recognition_results)
markdown_path = os.path.join(save_dir, "markdown", f"{basename}.md")
with open(markdown_path, "w", encoding="utf-8") as f:
f.write(markdown_content)
return json_path
def crop_margin(img: Image.Image) -> Image.Image:
"""Crop margins from image"""
try:
width, height = img.size
if width == 0 or height == 0:
print("Warning: Image has zero width or height")
return img
data = np.array(img.convert("L"))
data = data.astype(np.uint8)
max_val = data.max()
min_val = data.min()
if max_val == min_val:
return img
data = (data - min_val) / (max_val - min_val) * 255
gray = 255 * (data < 200).astype(np.uint8)
coords = cv2.findNonZero(gray) # Find all non-zero points (text)
if coords is None:
return img
a, b, w, h = cv2.boundingRect(coords) # Find minimum spanning bounding box
# Ensure crop coordinates are within image bounds
a = max(0, a)
b = max(0, b)
w = min(w, width - a)
h = min(h, height - b)
# Only crop if we have a valid region
if w > 0 and h > 0:
return img.crop((a, b, a + w, b + h))
return img
except Exception as e:
print(f"crop_margin error: {str(e)}")
return img # Return original image on error |