""" Copyright (c) 2025 Bytedance Ltd. and/or its affiliates SPDX-License-Identifier: MIT """ import argparse import glob import os import cv2 import torch from PIL import Image from transformers import AutoProcessor, VisionEncoderDecoderModel from utils.utils import * class DOLPHIN: def __init__(self, model_id_or_path): """Initialize the Hugging Face model Args: model_id_or_path: Path to local model or Hugging Face model ID """ # Load model from local path or Hugging Face hub self.processor = AutoProcessor.from_pretrained(model_id_or_path) self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path) self.model.eval() # Set device and precision self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model.to(self.device) self.model = self.model.half() # Always use half precision by default # set tokenizer self.tokenizer = self.processor.tokenizer def chat(self, prompt, image): """Process an image or batch of images with the given prompt(s) Args: prompt: Text prompt or list of prompts to guide the model image: PIL Image or list of PIL Images to process Returns: Generated text or list of texts from the model """ # Check if we're dealing with a batch is_batch = isinstance(image, list) if not is_batch: # Single image, wrap it in a list for consistent processing images = [image] prompts = [prompt] else: # Batch of images images = image prompts = prompt if isinstance(prompt, list) else [prompt] * len(images) # Prepare image batch_inputs = self.processor(images, return_tensors="pt", padding=True) batch_pixel_values = batch_inputs.pixel_values.half().to(self.device) # Prepare prompt prompts = [f"{p} " for p in prompts] batch_prompt_inputs = self.tokenizer( prompts, add_special_tokens=False, return_tensors="pt" ) batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device) batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device) # Generate text outputs = self.model.generate( pixel_values=batch_pixel_values, decoder_input_ids=batch_prompt_ids, decoder_attention_mask=batch_attention_mask, min_length=1, max_length=4096, pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id, use_cache=True, bad_words_ids=[[self.tokenizer.unk_token_id]], return_dict_in_generate=True, do_sample=False, num_beams=1, repetition_penalty=1.1 ) # Process output sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False) # Clean prompt text from output results = [] for i, sequence in enumerate(sequences): cleaned = sequence.replace(prompts[i], "").replace("", "").replace("", "").strip() results.append(cleaned) # Return a single result for single image input if not is_batch: return results[0] return results def process_page(image_path, model, save_dir, max_batch_size=None): """Parse document images with two stages""" # Stage 1: Page-level layout and reading order parsing pil_image = Image.open(image_path).convert("RGB") layout_output = model.chat("Parse the reading order of this document.", pil_image) # Stage 2: Element-level content parsing padded_image, dims = prepare_image(pil_image) recognition_results = process_elements(layout_output, padded_image, dims, model, max_batch_size) # Save outputs json_path = save_outputs(recognition_results, image_path, save_dir) return json_path, recognition_results def process_elements(layout_results, padded_image, dims, model, max_batch_size=None): """Parse all document elements with parallel decoding""" layout_results = parse_layout_string(layout_results) # Store text and table elements separately text_elements = [] # Text elements table_elements = [] # Table elements figure_results = [] # Image elements (no processing needed) previous_box = None reading_order = 0 # Collect elements to process and group by type for bbox, label in layout_results: try: # Adjust coordinates x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates( bbox, padded_image, dims, previous_box ) # Crop and parse element cropped = padded_image[y1:y2, x1:x2] if cropped.size > 0: if label == "fig": # For figure regions, add empty text result immediately figure_results.append( { "label": label, "bbox": [orig_x1, orig_y1, orig_x2, orig_y2], "text": "", "reading_order": reading_order, } ) else: # Prepare element for parsing pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)) element_info = { "crop": pil_crop, "label": label, "bbox": [orig_x1, orig_y1, orig_x2, orig_y2], "reading_order": reading_order, } # Group by type if label == "tab": table_elements.append(element_info) else: # Text elements text_elements.append(element_info) reading_order += 1 except Exception as e: print(f"Error processing bbox with label {label}: {str(e)}") continue # Initialize results list recognition_results = figure_results.copy() # Process text elements (in batches) if text_elements: text_results = process_element_batch(text_elements, model, "Read text in the image.", max_batch_size) recognition_results.extend(text_results) # Process table elements (in batches) if table_elements: table_results = process_element_batch(table_elements, model, "Parse the table in the image.", max_batch_size) recognition_results.extend(table_results) # Sort elements by reading order recognition_results.sort(key=lambda x: x.get("reading_order", 0)) return recognition_results def process_element_batch(elements, model, prompt, max_batch_size=None): """Process elements of the same type in batches""" results = [] # Determine batch size batch_size = len(elements) if max_batch_size is not None and max_batch_size > 0: batch_size = min(batch_size, max_batch_size) # Process in batches for i in range(0, len(elements), batch_size): batch_elements = elements[i:i+batch_size] crops_list = [elem["crop"] for elem in batch_elements] # Use the same prompt for all elements in the batch prompts_list = [prompt] * len(crops_list) # Batch inference batch_results = model.chat(prompts_list, crops_list) # Add results for j, result in enumerate(batch_results): elem = batch_elements[j] results.append({ "label": elem["label"], "bbox": elem["bbox"], "text": result.strip(), "reading_order": elem["reading_order"], }) return results def main(): parser = argparse.ArgumentParser(description="Document processing tool using DOLPHIN model") parser.add_argument("--input_path", type=str, default="./demo", help="Path to input image or directory of images") parser.add_argument( "--save_dir", type=str, default=None, help="Directory to save parsing results (default: same as input directory)", ) parser.add_argument( "--max_batch_size", type=int, default=16, help="Maximum number of document elements to parse in a single batch (default: 16)", ) args = parser.parse_args() # Load Model model = DOLPHIN("ByteDance/Dolphin") # Collect Document Images if os.path.isdir(args.input_path): image_files = [] for ext in [".jpg", ".jpeg", ".png", ".JPG", ".JPEG", ".PNG"]: image_files.extend(glob.glob(os.path.join(args.input_path, f"*{ext}"))) image_files = sorted(image_files) else: if not os.path.exists(args.input_path): raise FileNotFoundError(f"Input path {args.input_path} does not exist") image_files = [args.input_path] save_dir = args.save_dir or ( args.input_path if os.path.isdir(args.input_path) else os.path.dirname(args.input_path) ) setup_output_dirs(save_dir) total_samples = len(image_files) print(f"\nTotal samples to process: {total_samples}") # Process All Document Images for image_path in image_files: print(f"\nProcessing {image_path}") try: json_path, recognition_results = process_page( image_path=image_path, model=model, save_dir=save_dir, max_batch_size=args.max_batch_size, ) print(f"Processing completed. Results saved to {save_dir}") except Exception as e: print(f"Error processing {image_path}: {str(e)}") continue if __name__ == "__main__": main()