Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import diffusers | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from diffusers import FluxPipeline | |
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps | |
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
from einops import repeat | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from dreamo.transformer import flux_transformer_forward | |
from dreamo.utils import convert_flux_lora_to_diffusers | |
diffusers.models.transformers.transformer_flux.FluxTransformer2DModel.forward = flux_transformer_forward | |
def get_task_embedding_idx(task): | |
return 0 | |
class DreamOPipeline(FluxPipeline): | |
def __init__(self, scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer): | |
super().__init__(scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer) | |
self.t5_embedding = nn.Embedding(10, 4096) | |
self.task_embedding = nn.Embedding(2, 3072) | |
self.idx_embedding = nn.Embedding(10, 3072) | |
def load_dreamo_model(self, device, use_turbo=True): | |
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo.safetensors', local_dir='models') | |
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo_cfg_distill.safetensors', local_dir='models') | |
dreamo_lora = load_file('models/dreamo.safetensors') | |
cfg_distill_lora = load_file('models/dreamo_cfg_distill.safetensors') | |
self.t5_embedding.weight.data = dreamo_lora.pop('dreamo_t5_embedding.weight')[-10:] | |
self.task_embedding.weight.data = dreamo_lora.pop('dreamo_task_embedding.weight') | |
self.idx_embedding.weight.data = dreamo_lora.pop('dreamo_idx_embedding.weight') | |
self._prepare_t5() | |
dreamo_diffuser_lora = convert_flux_lora_to_diffusers(dreamo_lora) | |
cfg_diffuser_lora = convert_flux_lora_to_diffusers(cfg_distill_lora) | |
adapter_names = ['dreamo'] | |
adapter_weights = [1] | |
self.load_lora_weights(dreamo_diffuser_lora, adapter_name='dreamo') | |
if cfg_diffuser_lora is not None: | |
self.load_lora_weights(cfg_diffuser_lora, adapter_name='cfg') | |
adapter_names.append('cfg') | |
adapter_weights.append(1) | |
if use_turbo: | |
self.load_lora_weights( | |
hf_hub_download( | |
"alimama-creative/FLUX.1-Turbo-Alpha", "diffusion_pytorch_model.safetensors", local_dir='models' | |
), | |
adapter_name='turbo', | |
) | |
adapter_names.append('turbo') | |
adapter_weights.append(1) | |
self.fuse_lora(adapter_names=adapter_names, adapter_weights=adapter_weights, lora_scale=1) | |
self.t5_embedding = self.t5_embedding.to(device) | |
self.task_embedding = self.task_embedding.to(device) | |
self.idx_embedding = self.idx_embedding.to(device) | |
def _prepare_t5(self): | |
self.text_encoder_2.resize_token_embeddings(len(self.tokenizer_2)) | |
num_new_token = 10 | |
new_token_list = [f"[ref#{i}]" for i in range(1, 10)] + ["[res]"] | |
self.tokenizer_2.add_tokens(new_token_list, special_tokens=False) | |
self.text_encoder_2.resize_token_embeddings(len(self.tokenizer_2)) | |
input_embedding = self.text_encoder_2.get_input_embeddings().weight.data | |
input_embedding[-num_new_token:] = self.t5_embedding.weight.data | |
def _prepare_latent_image_ids(batch_size, height, width, device, dtype, start_height=0, start_width=0): | |
latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + start_height | |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + start_width | |
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) | |
latent_image_ids = latent_image_ids.reshape( | |
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
) | |
return latent_image_ids.to(device=device, dtype=dtype) | |
def _prepare_style_latent_image_ids(batch_size, height, width, device, dtype, start_height=0, start_width=0): | |
latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
latent_image_ids[..., 1] = latent_image_ids[..., 1] + start_height | |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + start_width | |
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) | |
latent_image_ids = latent_image_ids.reshape( | |
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
) | |
return latent_image_ids.to(device=device, dtype=dtype) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
negative_prompt: Union[str, List[str]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
true_cfg_scale: float = 1.0, | |
true_cfg_start_step: int = 1, | |
true_cfg_end_step: int = 1, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 28, | |
sigmas: Optional[List[float]] = None, | |
guidance_scale: float = 3.5, | |
neg_guidance_scale: float = 3.5, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
ref_conds=None, | |
first_step_guidance_scale=3.5, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
will be used instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is | |
not greater than `1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. | |
true_cfg_scale (`float`, *optional*, defaults to 1.0): | |
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
will be used. | |
guidance_scale (`float`, *optional*, defaults to 3.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
Examples: | |
Returns: | |
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
images. | |
""" | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale | |
self._joint_attention_kwargs = joint_attention_kwargs | |
self._current_timestep = None | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
lora_scale = ( | |
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
) | |
has_neg_prompt = negative_prompt is not None or ( | |
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None | |
) | |
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
( | |
prompt_embeds, | |
pooled_prompt_embeds, | |
text_ids, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
if do_true_cfg: | |
( | |
negative_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
_, | |
) = self.encode_prompt( | |
prompt=negative_prompt, | |
prompt_2=negative_prompt_2, | |
prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
# 4. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
latents, latent_image_ids = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 4.1 concat ref tokens to latent | |
origin_img_len = latents.shape[1] | |
embeddings = repeat(self.task_embedding.weight[1], "c -> n l c", n=batch_size, l=origin_img_len) | |
ref_latents = [] | |
ref_latent_image_idss = [] | |
start_height = height // 16 | |
start_width = width // 16 | |
for ref_cond in ref_conds: | |
img = ref_cond['img'] # [b, 3, h, w], range [-1, 1] | |
task = ref_cond['task'] | |
idx = ref_cond['idx'] | |
# encode ref with VAE | |
img = img.to(latents) | |
ref_latent = self.vae.encode(img).latent_dist.sample() | |
ref_latent = (ref_latent - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
cur_height = ref_latent.shape[2] | |
cur_width = ref_latent.shape[3] | |
ref_latent = self._pack_latents(ref_latent, batch_size, num_channels_latents, cur_height, cur_width) | |
ref_latent_image_ids = self._prepare_latent_image_ids( | |
batch_size, cur_height, cur_width, device, prompt_embeds.dtype, start_height, start_width | |
) | |
start_height += cur_height // 2 | |
start_width += cur_width // 2 | |
# prepare task_idx_embedding | |
task_idx = get_task_embedding_idx(task) | |
cur_task_embedding = repeat( | |
self.task_embedding.weight[task_idx], "c -> n l c", n=batch_size, l=ref_latent.shape[1] | |
) | |
cur_idx_embedding = repeat( | |
self.idx_embedding.weight[idx], "c -> n l c", n=batch_size, l=ref_latent.shape[1] | |
) | |
cur_embedding = cur_task_embedding + cur_idx_embedding | |
# concat ref to latent | |
embeddings = torch.cat([embeddings, cur_embedding], dim=1) | |
ref_latents.append(ref_latent) | |
ref_latent_image_idss.append(ref_latent_image_ids) | |
# 5. Prepare timesteps | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
image_seq_len = latents.shape[1] | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.get("base_image_seq_len", 256), | |
self.scheduler.config.get("max_image_seq_len", 4096), | |
self.scheduler.config.get("base_shift", 0.5), | |
self.scheduler.config.get("max_shift", 1.15), | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
sigmas=sigmas, | |
mu=mu, | |
) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
self._num_timesteps = len(timesteps) | |
# handle guidance | |
if self.transformer.config.guidance_embeds: | |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
guidance = guidance.expand(latents.shape[0]) | |
else: | |
guidance = None | |
neg_guidance = torch.full([1], neg_guidance_scale, device=device, dtype=torch.float32) | |
neg_guidance = neg_guidance.expand(latents.shape[0]) | |
first_step_guidance = torch.full([1], first_step_guidance_scale, device=device, dtype=torch.float32) | |
if self.joint_attention_kwargs is None: | |
self._joint_attention_kwargs = {} | |
# 6. Denoising loop | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
self._current_timestep = t | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
noise_pred = self.transformer( | |
hidden_states=torch.cat((latents, *ref_latents), dim=1), | |
timestep=timestep / 1000, | |
guidance=guidance if i > 0 else first_step_guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=torch.cat((latent_image_ids, *ref_latent_image_idss), dim=1), | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
embeddings=embeddings, | |
)[0][:, :origin_img_len] | |
if do_true_cfg and i >= true_cfg_start_step and i < true_cfg_end_step: | |
neg_noise_pred = self.transformer( | |
hidden_states=latents, | |
timestep=timestep / 1000, | |
guidance=neg_guidance, | |
pooled_projections=negative_pooled_prompt_embeds, | |
encoder_hidden_states=negative_prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if latents.dtype != latents_dtype and torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
self._current_timestep = None | |
if output_type == "latent": | |
image = latents | |
else: | |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return FluxPipelineOutput(images=image) | |