Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Union | |
import numpy as np | |
import torch | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
logging, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def flux_transformer_forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor = None, | |
pooled_projections: torch.Tensor = None, | |
timestep: torch.LongTensor = None, | |
img_ids: torch.Tensor = None, | |
txt_ids: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_block_samples=None, | |
controlnet_single_block_samples=None, | |
return_dict: bool = True, | |
controlnet_blocks_repeat: bool = False, | |
embeddings: torch.Tensor = None, | |
) -> Union[torch.Tensor, Transformer2DModelOutput]: | |
""" | |
The [`FluxTransformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`): | |
Input `hidden_states`. | |
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
from the embeddings of input conditions. | |
timestep ( `torch.LongTensor`): | |
Used to indicate denoising step. | |
block_controlnet_hidden_states: (`list` of `torch.Tensor`): | |
A list of tensors that if specified are added to the residuals of transformer blocks. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
if joint_attention_kwargs is not None: | |
joint_attention_kwargs = joint_attention_kwargs.copy() | |
lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
hidden_states = self.x_embedder(hidden_states) | |
# add task and idx embedding | |
if embeddings is not None: | |
hidden_states = hidden_states + embeddings | |
timestep = timestep.to(hidden_states.dtype) * 1000 | |
guidance = guidance.to(hidden_states.dtype) * 1000 if guidance is not None else None | |
temb = ( | |
self.time_text_embed(timestep, pooled_projections) | |
if guidance is None | |
else self.time_text_embed(timestep, guidance, pooled_projections) | |
) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
if txt_ids.ndim == 3: | |
# logger.warning( | |
# "Passing `txt_ids` 3d torch.Tensor is deprecated." | |
# "Please remove the batch dimension and pass it as a 2d torch Tensor" | |
# ) | |
txt_ids = txt_ids[0] | |
if img_ids.ndim == 3: | |
# logger.warning( | |
# "Passing `img_ids` 3d torch.Tensor is deprecated." | |
# "Please remove the batch dimension and pass it as a 2d torch Tensor" | |
# ) | |
img_ids = img_ids[0] | |
ids = torch.cat((txt_ids, img_ids), dim=0) | |
image_rotary_emb = self.pos_embed(ids) | |
for index_block, block in enumerate(self.transformer_blocks): | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
) | |
else: | |
encoder_hidden_states, hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
joint_attention_kwargs=joint_attention_kwargs, | |
) | |
# controlnet residual | |
if controlnet_block_samples is not None: | |
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) | |
interval_control = int(np.ceil(interval_control)) | |
# For Xlabs ControlNet. | |
if controlnet_blocks_repeat: | |
hidden_states = hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] | |
else: | |
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
for index_block, block in enumerate(self.single_transformer_blocks): | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
temb, | |
image_rotary_emb, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
joint_attention_kwargs=joint_attention_kwargs, | |
) | |
# controlnet residual | |
if controlnet_single_block_samples is not None: | |
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) | |
interval_control = int(np.ceil(interval_control)) | |
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( | |
hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
+ controlnet_single_block_samples[index_block // interval_control] | |
) | |
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
hidden_states = self.norm_out(hidden_states, temb) | |
output = self.proj_out(hidden_states) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |