DreamO / app.py
multimodalart's picture
UI/UX improvements and not using hte turbo model for quality trade off
c50ed86 verified
raw
history blame
16.4 kB
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import spaces
import argparse
import os
import shutil
import cv2
import gradio as gr
import numpy as np
import torch
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
import huggingface_hub
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms.functional import normalize
from dreamo.dreamo_pipeline import DreamOPipeline
from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img
from tools import BEN2
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=8080)
args = parser.parse_args()
huggingface_hub.login(os.getenv('HF_TOKEN'))
# try:
# shutil.rmtree('gradio_cached_examples')
# except FileNotFoundError:
# print("cache folder not exist")
class Generator:
def __init__(self):
device = torch.device('cuda')
# preprocessing models
# background remove model: BEN2
self.bg_rm_model = BEN2.BEN_Base().to(device).eval()
hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
# face crop and align tool: facexlib
self.face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=device,
)
# load dreamo
model_root = 'black-forest-labs/FLUX.1-dev'
dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
dreamo_pipeline.load_dreamo_model(device, use_turbo=False) # MODIFIED: use_turbo=False
self.dreamo_pipeline = dreamo_pipeline.to(device)
@torch.no_grad()
def get_align_face(self, img):
# the face preprocessing code is same as PuLID
self.face_helper.clean_all()
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
self.face_helper.read_image(image_bgr)
self.face_helper.get_face_landmarks_5(only_center_face=True)
self.face_helper.align_warp_face()
if len(self.face_helper.cropped_faces) == 0:
return None
align_face = self.face_helper.cropped_faces[0]
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
input = input.to(torch.device("cuda"))
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(input)
# only keep the face features
face_features_image = torch.where(bg, white_image, input)
face_features_image = tensor2img(face_features_image, rgb2bgr=False)
return face_features_image
generator = Generator()
@spaces.GPU
@torch.inference_mode()
def generate_image(
ref_image1,
ref_image2,
ref_task1,
ref_task2,
prompt,
seed,
width=1024,
height=1024,
ref_res=512,
num_steps=28, # MODIFIED: default num_steps to 28
guidance=3.5,
true_cfg=1,
cfg_start_step=0,
cfg_end_step=0,
neg_prompt='',
neg_guidance=3.5,
first_step_guidance=0,
):
print(prompt)
ref_conds = []
debug_images = []
ref_images = [ref_image1, ref_image2]
ref_tasks = [ref_task1, ref_task2]
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)):
if ref_image is not None:
if ref_task == "id":
ref_image = generator.get_align_face(ref_image)
elif ref_task != "style":
ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image))
ref_image = resize_numpy_image_area(np.array(ref_image), ref_res * ref_res)
debug_images.append(ref_image)
ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0
ref_image = 2 * ref_image - 1.0
ref_conds.append(
{
'img': ref_image,
'task': ref_task,
'idx': idx + 1,
}
)
seed = int(seed)
if seed == -1:
seed = torch.Generator(device="cpu").seed()
image = generator.dreamo_pipeline(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_steps,
guidance_scale=guidance,
ref_conds=ref_conds,
generator=torch.Generator(device="cpu").manual_seed(seed),
true_cfg_scale=true_cfg,
true_cfg_start_step=cfg_start_step,
true_cfg_end_step=cfg_end_step,
negative_prompt=neg_prompt,
neg_guidance_scale=neg_guidance,
first_step_guidance_scale=first_step_guidance if first_step_guidance > 0 else guidance,
).images[0]
return image, debug_images, seed
_HEADER_ = '''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">DreamO</h1>
<p style="font-size: 1rem; margin-bottom: 1.5rem;">Paper: <a href='https://arxiv.org/abs/2504.16915' target='_blank'>DreamO: A Unified Framework for Image Customization</a> | Codes: <a href='https://github.com/bytedance/DreamO' target='_blank'>GitHub</a></p>
</div>
❗️❗️❗️**User Guide:**
- The most important thing to do first is to try the examples provided below the demo, which will help you better understand the capabilities of the DreamO model and the types of tasks it currently supports
- For each input, please select the appropriate task type. For general objects, characters, or clothing, choose IP — we will remove the background from the input image. If you select ID, we will extract the face region from the input image (similar to PuLID). If you select Style, the background will be preserved, and you must prepend the prompt with the instruction: 'generate a same style image.' to activate the style task.
- To accelerate inference, we adopt FLUX-turbo LoRA, which reduces the sampling steps from 25 to 12 compared to FLUX-dev. Additionally, we distill a CFG LoRA, achieving nearly a twofold reduction in steps by eliminating the need for true CFG
''' # noqa E501
_CITE_ = r"""
If DreamO is helpful, please help to ⭐ the <a href='https://github.com/bytedance/DreamO' target='_blank'> Github Repo</a>. Thanks!
---
📧 **Contact**
If you have any questions or feedbacks, feel free to open a discussion or contact <b>[email protected]</b> and <b>[email protected]</b>
""" # noqa E501
# MODIFIED: Function to update guidance based on task selection
def update_guidance_on_task_selection(task1_value, task2_value, current_guidance_value_from_slider):
# current_guidance_value_from_slider is a float from the slider state
is_identity_selected = (task1_value == "id" or task2_value == "id")
if is_identity_selected:
return gr.update(value=1.5)
else:
# If no identity task is selected, and current guidance is 1.5 (was likely set by previous identity task),
# revert to original default (3.5). Otherwise, keep user's manual setting.
if float(current_guidance_value_from_slider) == 1.5:
return gr.update(value=3.5) # Default slider value
return gr.update() # No change, keep current value
def create_demo():
with gr.Blocks() as demo:
# MODIFIED: User guide in a closed Accordion
with gr.Accordion("User Guide", open=False):
gr.Markdown(_HEADER_)
with gr.Row():
with gr.Column():
with gr.Row():
ref_image1 = gr.Image(label="ref image 1", type="numpy", height=256)
ref_image2 = gr.Image(label="ref image 2", type="numpy", height=256)
with gr.Row():
# MODIFIED: Task names and values
task_choices = [("Composition", "ip"), ("Identity", "id"), ("Style", "style")]
ref_task1 = gr.Dropdown(choices=task_choices, value="ip", label="task for ref image 1")
ref_task2 = gr.Dropdown(choices=task_choices, value="ip", label="task for ref image 2")
prompt = gr.Textbox(label="Prompt", value="a person playing guitar in the street")
width = gr.Slider(768, 1024, 1024, step=16, label="Width")
height = gr.Slider(768, 1024, 1024, step=16, label="Height")
num_steps = gr.Slider(8, 30, 28, step=1, label="Number of steps") # MODIFIED: default slider value to 28
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance")
seed = gr.Textbox(label="Seed (-1 for random)", value="-1")
# MODIFIED: Event listeners for task dropdowns to update guidance
ref_task1.change(
fn=update_guidance_on_task_selection,
inputs=[ref_task1, ref_task2, guidance], # Pass current guidance value
outputs=[guidance]
)
ref_task2.change(
fn=update_guidance_on_task_selection,
inputs=[ref_task1, ref_task2, guidance], # Pass current guidance value
outputs=[guidance]
)
with gr.Accordion("Advanced Options", open=False, visible=False):
ref_res = gr.Slider(512, 1024, 512, step=16, label="resolution for ref image")
neg_prompt = gr.Textbox(label="Neg Prompt", value="")
neg_guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Neg Guidance")
true_cfg = gr.Slider(1, 5, 1, step=0.1, label="true cfg")
cfg_start_step = gr.Slider(0, 30, 0, step=1, label="cfg start step")
cfg_end_step = gr.Slider(0, 30, 0, step=1, label="cfg end step")
first_step_guidance = gr.Slider(0, 10, 0, step=0.1, label="first step guidance")
generate_btn = gr.Button("Generate")
gr.Markdown(_CITE_)
with gr.Column():
output_image = gr.Image(label="Generated Image", format='png')
debug_image = gr.Gallery(
label="Preprocessing output (including possible face crop and background remove)",
elem_id="gallery",
)
seed_output = gr.Textbox(label="Used Seed")
with gr.Row(), gr.Column():
gr.Markdown("## Examples")
example_inps = [
[
'example_inputs/woman1.png',
None,
'ip', # Corresponds to "Composition"
'ip', # Corresponds to "Composition"
'profile shot dark photo of a 25-year-old female with smoke escaping from her mouth, the backlit smoke gives the image an ephemeral quality, natural face, natural eyebrows, natural skin texture, award winning photo, highly detailed face, atmospheric lighting, film grain, monochrome', # noqa E501
9180879731249039735,
],
[
'example_inputs/man1.png',
None,
'ip',
'ip',
'a man sitting on the cloud, playing guitar',
1206523688721442817,
],
[
'example_inputs/toy1.png',
None,
'ip',
'ip',
'a purple toy holding a sign saying "DreamO", on the mountain',
1563188099017016129,
],
[
'example_inputs/perfume.png',
None,
'ip',
'ip',
'a perfume under spotlight',
116150031980664704,
],
[
'example_inputs/hinton.jpeg',
None,
'id', # Corresponds to "Identity"
'ip',
'portrait, Chibi',
5443415087540486371,
],
[
'example_inputs/mickey.png',
None,
'style', # Corresponds to "Style"
'ip',
'generate a same style image. A rooster wearing overalls.',
6245580464677124951,
],
[
'example_inputs/mountain.png',
None,
'style',
'ip',
'generate a same style image. A pavilion by the river, and the distant mountains are endless',
5248066378927500767,
],
[
'example_inputs/shirt.png',
'example_inputs/skirt.jpeg',
'ip',
'ip',
'A girl is wearing a short-sleeved shirt and a short skirt on the beach.',
9514069256241143615,
],
[
'example_inputs/woman2.png',
'example_inputs/dress.png',
'id', # Corresponds to "Identity"
'ip',
'the woman wearing a dress, In the banquet hall',
7698454872441022867,
],
[
'example_inputs/dog1.png',
'example_inputs/dog2.png',
'ip',
'ip',
'two dogs in the jungle',
6187006025405083344,
],
[
'example_inputs/woman3.png',
'example_inputs/cat.png',
'ip',
'ip',
'A girl rides a giant cat, walking in the noisy modern city. High definition, realistic, non-cartoonish. Excellent photography work, 8k high definition.', # noqa E501
11980469406460273604,
],
[
'example_inputs/man2.jpeg',
'example_inputs/woman4.jpeg',
'ip',
'ip',
'a man is dancing with a woman in the room',
8303780338601106219,
],
]
gr.Examples(
examples=example_inps,
inputs=[ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed],
label='row 1-4: IP task; row 5: ID task; row 6-7: Style task. row 8-9: Try-On task; row 10-12: Multi IP',
cache_examples='lazy',
outputs=[output_image, debug_image, seed_output],
fn=generate_image,
)
generate_btn.click(
fn=generate_image,
inputs=[
ref_image1,
ref_image2,
ref_task1,
ref_task2,
prompt,
seed,
width,
height,
ref_res,
num_steps,
guidance,
true_cfg,
cfg_start_step,
cfg_end_step,
neg_prompt,
neg_guidance,
first_step_guidance,
],
outputs=[output_image, debug_image, seed_output],
)
return demo
if __name__ == '__main__':
demo = create_demo()
demo.launch()