Spaces:
Running
on
Zero
Running
on
Zero
Upload scheduling_tcd.py
Browse files- scheduling_tcd.py +686 -0
scheduling_tcd.py
ADDED
@@ -0,0 +1,686 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
16 |
+
# and https://github.com/hojonathanho/diffusion
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
|
25 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
27 |
+
from diffusers.utils import BaseOutput, logging
|
28 |
+
from diffusers.utils.torch_utils import randn_tensor
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class TCDSchedulerOutput(BaseOutput):
|
36 |
+
"""
|
37 |
+
Output class for the scheduler's `step` function output.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
41 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
42 |
+
denoising loop.
|
43 |
+
pred_noised_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
44 |
+
The predicted noised sample `(x_{s})` based on the model output from the current timestep.
|
45 |
+
"""
|
46 |
+
|
47 |
+
prev_sample: torch.FloatTensor
|
48 |
+
pred_noised_sample: Optional[torch.FloatTensor] = None
|
49 |
+
|
50 |
+
|
51 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
52 |
+
def betas_for_alpha_bar(
|
53 |
+
num_diffusion_timesteps,
|
54 |
+
max_beta=0.999,
|
55 |
+
alpha_transform_type="cosine",
|
56 |
+
):
|
57 |
+
"""
|
58 |
+
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
59 |
+
(1-beta) over time from t = [0,1].
|
60 |
+
|
61 |
+
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
62 |
+
to that part of the diffusion process.
|
63 |
+
|
64 |
+
|
65 |
+
Args:
|
66 |
+
num_diffusion_timesteps (`int`): the number of betas to produce.
|
67 |
+
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
68 |
+
prevent singularities.
|
69 |
+
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
70 |
+
Choose from `cosine` or `exp`
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
74 |
+
"""
|
75 |
+
if alpha_transform_type == "cosine":
|
76 |
+
|
77 |
+
def alpha_bar_fn(t):
|
78 |
+
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
79 |
+
|
80 |
+
elif alpha_transform_type == "exp":
|
81 |
+
|
82 |
+
def alpha_bar_fn(t):
|
83 |
+
return math.exp(t * -12.0)
|
84 |
+
|
85 |
+
else:
|
86 |
+
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
|
87 |
+
|
88 |
+
betas = []
|
89 |
+
for i in range(num_diffusion_timesteps):
|
90 |
+
t1 = i / num_diffusion_timesteps
|
91 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
92 |
+
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
93 |
+
return torch.tensor(betas, dtype=torch.float32)
|
94 |
+
|
95 |
+
|
96 |
+
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
97 |
+
def rescale_zero_terminal_snr(betas: torch.FloatTensor) -> torch.FloatTensor:
|
98 |
+
"""
|
99 |
+
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
100 |
+
|
101 |
+
|
102 |
+
Args:
|
103 |
+
betas (`torch.FloatTensor`):
|
104 |
+
the betas that the scheduler is being initialized with.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
`torch.FloatTensor`: rescaled betas with zero terminal SNR
|
108 |
+
"""
|
109 |
+
# Convert betas to alphas_bar_sqrt
|
110 |
+
alphas = 1.0 - betas
|
111 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
112 |
+
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
113 |
+
|
114 |
+
# Store old values.
|
115 |
+
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
116 |
+
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
117 |
+
|
118 |
+
# Shift so the last timestep is zero.
|
119 |
+
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
120 |
+
|
121 |
+
# Scale so the first timestep is back to the old value.
|
122 |
+
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
123 |
+
|
124 |
+
# Convert alphas_bar_sqrt to betas
|
125 |
+
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
126 |
+
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
127 |
+
alphas = torch.cat([alphas_bar[0:1], alphas])
|
128 |
+
betas = 1 - alphas
|
129 |
+
|
130 |
+
return betas
|
131 |
+
|
132 |
+
|
133 |
+
class TCDScheduler(SchedulerMixin, ConfigMixin):
|
134 |
+
"""
|
135 |
+
`TCDScheduler` incorporates the `Strategic Stochastic Sampling` introduced by the paper `Trajectory Consistency Distillation`,
|
136 |
+
extending the original Multistep Consistency Sampling to enable unrestricted trajectory traversal.
|
137 |
+
|
138 |
+
This code is based on the official repo of TCD(https://github.com/jabir-zheng/TCD).
|
139 |
+
|
140 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. [`~ConfigMixin`] takes care of storing all config
|
141 |
+
attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be
|
142 |
+
accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving
|
143 |
+
functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
num_train_timesteps (`int`, defaults to 1000):
|
147 |
+
The number of diffusion steps to train the model.
|
148 |
+
beta_start (`float`, defaults to 0.0001):
|
149 |
+
The starting `beta` value of inference.
|
150 |
+
beta_end (`float`, defaults to 0.02):
|
151 |
+
The final `beta` value.
|
152 |
+
beta_schedule (`str`, defaults to `"linear"`):
|
153 |
+
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
154 |
+
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
155 |
+
trained_betas (`np.ndarray`, *optional*):
|
156 |
+
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
157 |
+
original_inference_steps (`int`, *optional*, defaults to 50):
|
158 |
+
The default number of inference steps used to generate a linearly-spaced timestep schedule, from which we
|
159 |
+
will ultimately take `num_inference_steps` evenly spaced timesteps to form the final timestep schedule.
|
160 |
+
clip_sample (`bool`, defaults to `True`):
|
161 |
+
Clip the predicted sample for numerical stability.
|
162 |
+
clip_sample_range (`float`, defaults to 1.0):
|
163 |
+
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
164 |
+
set_alpha_to_one (`bool`, defaults to `True`):
|
165 |
+
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
166 |
+
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
167 |
+
otherwise it uses the alpha value at step 0.
|
168 |
+
steps_offset (`int`, defaults to 0):
|
169 |
+
An offset added to the inference steps, as required by some model families.
|
170 |
+
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
171 |
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
172 |
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
173 |
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
174 |
+
thresholding (`bool`, defaults to `False`):
|
175 |
+
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
176 |
+
as Stable Diffusion.
|
177 |
+
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
178 |
+
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
179 |
+
sample_max_value (`float`, defaults to 1.0):
|
180 |
+
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
181 |
+
timestep_spacing (`str`, defaults to `"leading"`):
|
182 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
183 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
184 |
+
timestep_scaling (`float`, defaults to 10.0):
|
185 |
+
The factor the timesteps will be multiplied by when calculating the consistency model boundary conditions
|
186 |
+
`c_skip` and `c_out`. Increasing this will decrease the approximation error (although the approximation
|
187 |
+
error at the default of `10.0` is already pretty small).
|
188 |
+
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
189 |
+
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
190 |
+
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
191 |
+
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
192 |
+
"""
|
193 |
+
|
194 |
+
order = 1
|
195 |
+
|
196 |
+
@register_to_config
|
197 |
+
def __init__(
|
198 |
+
self,
|
199 |
+
num_train_timesteps: int = 1000,
|
200 |
+
beta_start: float = 0.00085,
|
201 |
+
beta_end: float = 0.012,
|
202 |
+
beta_schedule: str = "scaled_linear",
|
203 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
204 |
+
original_inference_steps: int = 50,
|
205 |
+
clip_sample: bool = False,
|
206 |
+
clip_sample_range: float = 1.0,
|
207 |
+
set_alpha_to_one: bool = True,
|
208 |
+
steps_offset: int = 0,
|
209 |
+
prediction_type: str = "epsilon",
|
210 |
+
thresholding: bool = False,
|
211 |
+
dynamic_thresholding_ratio: float = 0.995,
|
212 |
+
sample_max_value: float = 1.0,
|
213 |
+
timestep_spacing: str = "leading",
|
214 |
+
timestep_scaling: float = 10.0,
|
215 |
+
rescale_betas_zero_snr: bool = False,
|
216 |
+
):
|
217 |
+
if trained_betas is not None:
|
218 |
+
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
219 |
+
elif beta_schedule == "linear":
|
220 |
+
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
221 |
+
elif beta_schedule == "scaled_linear":
|
222 |
+
# this schedule is very specific to the latent diffusion model.
|
223 |
+
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
224 |
+
elif beta_schedule == "squaredcos_cap_v2":
|
225 |
+
# Glide cosine schedule
|
226 |
+
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
227 |
+
else:
|
228 |
+
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
229 |
+
|
230 |
+
# Rescale for zero SNR
|
231 |
+
if rescale_betas_zero_snr:
|
232 |
+
self.betas = rescale_zero_terminal_snr(self.betas)
|
233 |
+
|
234 |
+
self.alphas = 1.0 - self.betas
|
235 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
236 |
+
|
237 |
+
# At every step in ddim, we are looking into the previous alphas_cumprod
|
238 |
+
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
239 |
+
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
240 |
+
# whether we use the final alpha of the "non-previous" one.
|
241 |
+
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
242 |
+
|
243 |
+
# standard deviation of the initial noise distribution
|
244 |
+
self.init_noise_sigma = 1.0
|
245 |
+
|
246 |
+
# setable values
|
247 |
+
self.num_inference_steps = None
|
248 |
+
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
249 |
+
self.custom_timesteps = False
|
250 |
+
|
251 |
+
self._step_index = None
|
252 |
+
self._begin_index = None
|
253 |
+
|
254 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
255 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
256 |
+
if schedule_timesteps is None:
|
257 |
+
schedule_timesteps = self.timesteps
|
258 |
+
|
259 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
260 |
+
|
261 |
+
# The sigma index that is taken for the **very** first `step`
|
262 |
+
# is always the second index (or the last index if there is only 1)
|
263 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
264 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
265 |
+
pos = 1 if len(indices) > 1 else 0
|
266 |
+
|
267 |
+
return indices[pos].item()
|
268 |
+
|
269 |
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
270 |
+
def _init_step_index(self, timestep):
|
271 |
+
if self.begin_index is None:
|
272 |
+
if isinstance(timestep, torch.Tensor):
|
273 |
+
timestep = timestep.to(self.timesteps.device)
|
274 |
+
self._step_index = self.index_for_timestep(timestep)
|
275 |
+
else:
|
276 |
+
self._step_index = self._begin_index
|
277 |
+
|
278 |
+
@property
|
279 |
+
def step_index(self):
|
280 |
+
return self._step_index
|
281 |
+
|
282 |
+
@property
|
283 |
+
def begin_index(self):
|
284 |
+
"""
|
285 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
286 |
+
"""
|
287 |
+
return self._begin_index
|
288 |
+
|
289 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
290 |
+
def set_begin_index(self, begin_index: int = 0):
|
291 |
+
"""
|
292 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
293 |
+
|
294 |
+
Args:
|
295 |
+
begin_index (`int`):
|
296 |
+
The begin index for the scheduler.
|
297 |
+
"""
|
298 |
+
self._begin_index = begin_index
|
299 |
+
|
300 |
+
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
301 |
+
"""
|
302 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
303 |
+
current timestep.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
sample (`torch.FloatTensor`):
|
307 |
+
The input sample.
|
308 |
+
timestep (`int`, *optional*):
|
309 |
+
The current timestep in the diffusion chain.
|
310 |
+
Returns:
|
311 |
+
`torch.FloatTensor`:
|
312 |
+
A scaled input sample.
|
313 |
+
"""
|
314 |
+
return sample
|
315 |
+
|
316 |
+
# Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler._get_variance
|
317 |
+
def _get_variance(self, timestep, prev_timestep):
|
318 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
319 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
320 |
+
beta_prod_t = 1 - alpha_prod_t
|
321 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
322 |
+
|
323 |
+
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
324 |
+
|
325 |
+
return variance
|
326 |
+
|
327 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
328 |
+
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
329 |
+
"""
|
330 |
+
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
331 |
+
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
332 |
+
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
333 |
+
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
334 |
+
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
335 |
+
|
336 |
+
https://arxiv.org/abs/2205.11487
|
337 |
+
"""
|
338 |
+
dtype = sample.dtype
|
339 |
+
batch_size, channels, *remaining_dims = sample.shape
|
340 |
+
|
341 |
+
if dtype not in (torch.float32, torch.float64):
|
342 |
+
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
343 |
+
|
344 |
+
# Flatten sample for doing quantile calculation along each image
|
345 |
+
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
346 |
+
|
347 |
+
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
348 |
+
|
349 |
+
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
350 |
+
s = torch.clamp(
|
351 |
+
s, min=1, max=self.config.sample_max_value
|
352 |
+
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
353 |
+
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
354 |
+
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
355 |
+
|
356 |
+
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
357 |
+
sample = sample.to(dtype)
|
358 |
+
|
359 |
+
return sample
|
360 |
+
|
361 |
+
def set_timesteps(
|
362 |
+
self,
|
363 |
+
num_inference_steps: Optional[int] = None,
|
364 |
+
device: Union[str, torch.device] = None,
|
365 |
+
original_inference_steps: Optional[int] = None,
|
366 |
+
timesteps: Optional[List[int]] = None,
|
367 |
+
strength: int = 1.0,
|
368 |
+
):
|
369 |
+
"""
|
370 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
371 |
+
|
372 |
+
Args:
|
373 |
+
num_inference_steps (`int`, *optional*):
|
374 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
375 |
+
`timesteps` must be `None`.
|
376 |
+
device (`str` or `torch.device`, *optional*):
|
377 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
378 |
+
original_inference_steps (`int`, *optional*):
|
379 |
+
The original number of inference steps, which will be used to generate a linearly-spaced timestep
|
380 |
+
schedule (which is different from the standard `diffusers` implementation). We will then take
|
381 |
+
`num_inference_steps` timesteps from this schedule, evenly spaced in terms of indices, and use that as
|
382 |
+
our final timestep schedule. If not set, this will default to the `original_inference_steps` attribute.
|
383 |
+
timesteps (`List[int]`, *optional*):
|
384 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
385 |
+
timestep spacing strategy of equal spacing between timesteps on the training/distillation timestep
|
386 |
+
schedule is used. If `timesteps` is passed, `num_inference_steps` must be `None`.
|
387 |
+
"""
|
388 |
+
# 0. Check inputs
|
389 |
+
if num_inference_steps is None and timesteps is None:
|
390 |
+
raise ValueError("Must pass exactly one of `num_inference_steps` or `custom_timesteps`.")
|
391 |
+
|
392 |
+
if num_inference_steps is not None and timesteps is not None:
|
393 |
+
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
|
394 |
+
|
395 |
+
# 1. Calculate the TCD original training/distillation timestep schedule.
|
396 |
+
original_steps = (
|
397 |
+
original_inference_steps if original_inference_steps is not None else self.config.original_inference_steps
|
398 |
+
)
|
399 |
+
|
400 |
+
if original_inference_steps is None:
|
401 |
+
# default option, timesteps align with discrete inference steps
|
402 |
+
if original_steps > self.config.num_train_timesteps:
|
403 |
+
raise ValueError(
|
404 |
+
f"`original_steps`: {original_steps} cannot be larger than `self.config.train_timesteps`:"
|
405 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
406 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
407 |
+
)
|
408 |
+
# TCD Timesteps Setting
|
409 |
+
# The skipping step parameter k from the paper.
|
410 |
+
k = self.config.num_train_timesteps // original_steps
|
411 |
+
# TCD Training/Distillation Steps Schedule
|
412 |
+
tcd_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * k - 1
|
413 |
+
else:
|
414 |
+
# customised option, sampled timesteps can be any arbitrary value
|
415 |
+
tcd_origin_timesteps = np.asarray(list(range(0, int(self.config.num_train_timesteps * strength))))
|
416 |
+
|
417 |
+
# 2. Calculate the TCD inference timestep schedule.
|
418 |
+
if timesteps is not None:
|
419 |
+
# 2.1 Handle custom timestep schedules.
|
420 |
+
train_timesteps = set(tcd_origin_timesteps)
|
421 |
+
non_train_timesteps = []
|
422 |
+
for i in range(1, len(timesteps)):
|
423 |
+
if timesteps[i] >= timesteps[i - 1]:
|
424 |
+
raise ValueError("`custom_timesteps` must be in descending order.")
|
425 |
+
|
426 |
+
if timesteps[i] not in train_timesteps:
|
427 |
+
non_train_timesteps.append(timesteps[i])
|
428 |
+
|
429 |
+
if timesteps[0] >= self.config.num_train_timesteps:
|
430 |
+
raise ValueError(
|
431 |
+
f"`timesteps` must start before `self.config.train_timesteps`:"
|
432 |
+
f" {self.config.num_train_timesteps}."
|
433 |
+
)
|
434 |
+
|
435 |
+
# Raise warning if timestep schedule does not start with self.config.num_train_timesteps - 1
|
436 |
+
if strength == 1.0 and timesteps[0] != self.config.num_train_timesteps - 1:
|
437 |
+
logger.warning(
|
438 |
+
f"The first timestep on the custom timestep schedule is {timesteps[0]}, not"
|
439 |
+
f" `self.config.num_train_timesteps - 1`: {self.config.num_train_timesteps - 1}. You may get"
|
440 |
+
f" unexpected results when using this timestep schedule."
|
441 |
+
)
|
442 |
+
|
443 |
+
# Raise warning if custom timestep schedule contains timesteps not on original timestep schedule
|
444 |
+
if non_train_timesteps:
|
445 |
+
logger.warning(
|
446 |
+
f"The custom timestep schedule contains the following timesteps which are not on the original"
|
447 |
+
f" training/distillation timestep schedule: {non_train_timesteps}. You may get unexpected results"
|
448 |
+
f" when using this timestep schedule."
|
449 |
+
)
|
450 |
+
|
451 |
+
# Raise warning if custom timestep schedule is longer than original_steps
|
452 |
+
if original_steps is not None:
|
453 |
+
if len(timesteps) > original_steps:
|
454 |
+
logger.warning(
|
455 |
+
f"The number of timesteps in the custom timestep schedule is {len(timesteps)}, which exceeds the"
|
456 |
+
f" the length of the timestep schedule used for training: {original_steps}. You may get some"
|
457 |
+
f" unexpected results when using this timestep schedule."
|
458 |
+
)
|
459 |
+
else:
|
460 |
+
if len(timesteps) > self.config.num_train_timesteps:
|
461 |
+
logger.warning(
|
462 |
+
f"The number of timesteps in the custom timestep schedule is {len(timesteps)}, which exceeds the"
|
463 |
+
f" the length of the timestep schedule used for training: {self.config.num_train_timesteps}. You may get some"
|
464 |
+
f" unexpected results when using this timestep schedule."
|
465 |
+
)
|
466 |
+
|
467 |
+
timesteps = np.array(timesteps, dtype=np.int64)
|
468 |
+
self.num_inference_steps = len(timesteps)
|
469 |
+
self.custom_timesteps = True
|
470 |
+
|
471 |
+
# Apply strength (e.g. for img2img pipelines) (see StableDiffusionImg2ImgPipeline.get_timesteps)
|
472 |
+
init_timestep = min(int(self.num_inference_steps * strength), self.num_inference_steps)
|
473 |
+
t_start = max(self.num_inference_steps - init_timestep, 0)
|
474 |
+
timesteps = timesteps[t_start * self.order :]
|
475 |
+
# TODO: also reset self.num_inference_steps?
|
476 |
+
else:
|
477 |
+
# 2.2 Create the "standard" TCD inference timestep schedule.
|
478 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
479 |
+
raise ValueError(
|
480 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
481 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
482 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
483 |
+
)
|
484 |
+
|
485 |
+
if original_steps is not None:
|
486 |
+
skipping_step = len(tcd_origin_timesteps) // num_inference_steps
|
487 |
+
|
488 |
+
if skipping_step < 1:
|
489 |
+
raise ValueError(
|
490 |
+
f"The combination of `original_steps x strength`: {original_steps} x {strength} is smaller than `num_inference_steps`: {num_inference_steps}. Make sure to either reduce `num_inference_steps` to a value smaller than {int(original_steps * strength)} or increase `strength` to a value higher than {float(num_inference_steps / original_steps)}."
|
491 |
+
)
|
492 |
+
|
493 |
+
self.num_inference_steps = num_inference_steps
|
494 |
+
|
495 |
+
if original_steps is not None:
|
496 |
+
if num_inference_steps > original_steps:
|
497 |
+
raise ValueError(
|
498 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`:"
|
499 |
+
f" {original_steps} because the final timestep schedule will be a subset of the"
|
500 |
+
f" `original_inference_steps`-sized initial timestep schedule."
|
501 |
+
)
|
502 |
+
else:
|
503 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
504 |
+
raise ValueError(
|
505 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `num_train_timesteps`:"
|
506 |
+
f" {self.config.num_train_timesteps} because the final timestep schedule will be a subset of the"
|
507 |
+
f" `num_train_timesteps`-sized initial timestep schedule."
|
508 |
+
)
|
509 |
+
|
510 |
+
# TCD Inference Steps Schedule
|
511 |
+
tcd_origin_timesteps = tcd_origin_timesteps[::-1].copy()
|
512 |
+
# Select (approximately) evenly spaced indices from tcd_origin_timesteps.
|
513 |
+
inference_indices = np.linspace(0, len(tcd_origin_timesteps), num=num_inference_steps, endpoint=False)
|
514 |
+
inference_indices = np.floor(inference_indices).astype(np.int64)
|
515 |
+
timesteps = tcd_origin_timesteps[inference_indices]
|
516 |
+
|
517 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.long)
|
518 |
+
|
519 |
+
self._step_index = None
|
520 |
+
self._begin_index = None
|
521 |
+
|
522 |
+
def step(
|
523 |
+
self,
|
524 |
+
model_output: torch.FloatTensor,
|
525 |
+
timestep: int,
|
526 |
+
sample: torch.FloatTensor,
|
527 |
+
eta: float = 0.3,
|
528 |
+
generator: Optional[torch.Generator] = None,
|
529 |
+
return_dict: bool = True,
|
530 |
+
) -> Union[TCDSchedulerOutput, Tuple]:
|
531 |
+
"""
|
532 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
533 |
+
process from the learned model outputs (most often the predicted noise).
|
534 |
+
|
535 |
+
Args:
|
536 |
+
model_output (`torch.FloatTensor`):
|
537 |
+
The direct output from learned diffusion model.
|
538 |
+
timestep (`int`):
|
539 |
+
The current discrete timestep in the diffusion chain.
|
540 |
+
sample (`torch.FloatTensor`):
|
541 |
+
A current instance of a sample created by the diffusion process.
|
542 |
+
eta (`float`):
|
543 |
+
A stochastic parameter (referred to as `gamma` in the paper) used to control the stochasticity in every step.
|
544 |
+
When eta = 0, it represents deterministic sampling, whereas eta = 1 indicates full stochastic sampling.
|
545 |
+
generator (`torch.Generator`, *optional*):
|
546 |
+
A random number generator.
|
547 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
548 |
+
Whether or not to return a [`~schedulers.scheduling_tcd.TCDSchedulerOutput`] or `tuple`.
|
549 |
+
Returns:
|
550 |
+
[`~schedulers.scheduling_utils.TCDSchedulerOutput`] or `tuple`:
|
551 |
+
If return_dict is `True`, [`~schedulers.scheduling_tcd.TCDSchedulerOutput`] is returned, otherwise a
|
552 |
+
tuple is returned where the first element is the sample tensor.
|
553 |
+
"""
|
554 |
+
if self.num_inference_steps is None:
|
555 |
+
raise ValueError(
|
556 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
557 |
+
)
|
558 |
+
|
559 |
+
if self.step_index is None:
|
560 |
+
self._init_step_index(timestep)
|
561 |
+
|
562 |
+
assert 0 <= eta <= 1.0, "gamma must be less than or equal to 1.0"
|
563 |
+
|
564 |
+
# 1. get previous step value
|
565 |
+
prev_step_index = self.step_index + 1
|
566 |
+
if prev_step_index < len(self.timesteps):
|
567 |
+
prev_timestep = self.timesteps[prev_step_index]
|
568 |
+
else:
|
569 |
+
prev_timestep = torch.tensor(0)
|
570 |
+
|
571 |
+
timestep_s = torch.floor((1 - eta) * prev_timestep).to(dtype=torch.long)
|
572 |
+
|
573 |
+
# 2. compute alphas, betas
|
574 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
575 |
+
beta_prod_t = 1 - alpha_prod_t
|
576 |
+
|
577 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
578 |
+
|
579 |
+
alpha_prod_s = self.alphas_cumprod[timestep_s]
|
580 |
+
beta_prod_s = 1 - alpha_prod_s
|
581 |
+
|
582 |
+
# 3. Compute the predicted noised sample x_s based on the model parameterization
|
583 |
+
if self.config.prediction_type == "epsilon": # noise-prediction
|
584 |
+
pred_original_sample = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
|
585 |
+
pred_epsilon = model_output
|
586 |
+
pred_noised_sample = alpha_prod_s.sqrt() * pred_original_sample + beta_prod_s.sqrt() * pred_epsilon
|
587 |
+
elif self.config.prediction_type == "sample": # x-prediction
|
588 |
+
pred_original_sample = model_output
|
589 |
+
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
590 |
+
pred_noised_sample = alpha_prod_s.sqrt() * pred_original_sample + beta_prod_s.sqrt() * pred_epsilon
|
591 |
+
elif self.config.prediction_type == "v_prediction": # v-prediction
|
592 |
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
593 |
+
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
594 |
+
pred_noised_sample = alpha_prod_s.sqrt() * pred_original_sample + beta_prod_s.sqrt() * pred_epsilon
|
595 |
+
else:
|
596 |
+
raise ValueError(
|
597 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
|
598 |
+
" `v_prediction` for `TCDScheduler`."
|
599 |
+
)
|
600 |
+
|
601 |
+
# 4. Sample and inject noise z ~ N(0, I) for MultiStep Inference
|
602 |
+
# Noise is not used on the final timestep of the timestep schedule.
|
603 |
+
# This also means that noise is not used for one-step sampling.
|
604 |
+
# Eta (referred to as "gamma" in the paper) was introduced to control the stochasticity in every step.
|
605 |
+
# When eta = 0, it represents deterministic sampling, whereas eta = 1 indicates full stochastic sampling.
|
606 |
+
if eta > 0:
|
607 |
+
if self.step_index != self.num_inference_steps - 1:
|
608 |
+
noise = randn_tensor(
|
609 |
+
model_output.shape, generator=generator, device=model_output.device, dtype=pred_noised_sample.dtype
|
610 |
+
)
|
611 |
+
prev_sample = (alpha_prod_t_prev / alpha_prod_s).sqrt() * pred_noised_sample + (
|
612 |
+
1 - alpha_prod_t_prev / alpha_prod_s
|
613 |
+
).sqrt() * noise
|
614 |
+
else:
|
615 |
+
prev_sample = pred_noised_sample
|
616 |
+
else:
|
617 |
+
prev_sample = pred_noised_sample
|
618 |
+
|
619 |
+
# upon completion increase step index by one
|
620 |
+
self._step_index += 1
|
621 |
+
|
622 |
+
if not return_dict:
|
623 |
+
return (prev_sample, pred_noised_sample)
|
624 |
+
|
625 |
+
return TCDSchedulerOutput(prev_sample=prev_sample, pred_noised_sample=pred_noised_sample)
|
626 |
+
|
627 |
+
def add_noise(
|
628 |
+
self,
|
629 |
+
original_samples: torch.FloatTensor,
|
630 |
+
noise: torch.FloatTensor,
|
631 |
+
timesteps: torch.IntTensor,
|
632 |
+
) -> torch.FloatTensor:
|
633 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
634 |
+
alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
635 |
+
timesteps = timesteps.to(original_samples.device)
|
636 |
+
|
637 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
638 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
639 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
640 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
641 |
+
|
642 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
643 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
644 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
645 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
646 |
+
|
647 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
648 |
+
return noisy_samples
|
649 |
+
|
650 |
+
def get_velocity(
|
651 |
+
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
652 |
+
) -> torch.FloatTensor:
|
653 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
654 |
+
alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
|
655 |
+
timesteps = timesteps.to(sample.device)
|
656 |
+
|
657 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
658 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
659 |
+
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
660 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
661 |
+
|
662 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
663 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
664 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
665 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
666 |
+
|
667 |
+
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
668 |
+
return velocity
|
669 |
+
|
670 |
+
def __len__(self):
|
671 |
+
return self.config.num_train_timesteps
|
672 |
+
|
673 |
+
def previous_timestep(self, timestep):
|
674 |
+
if self.custom_timesteps:
|
675 |
+
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
|
676 |
+
if index == self.timesteps.shape[0] - 1:
|
677 |
+
prev_t = torch.tensor(-1)
|
678 |
+
else:
|
679 |
+
prev_t = self.timesteps[index + 1]
|
680 |
+
else:
|
681 |
+
num_inference_steps = (
|
682 |
+
self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
|
683 |
+
)
|
684 |
+
prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
|
685 |
+
|
686 |
+
return prev_t
|