Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,289 Bytes
593f3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Linear
from tqdm import tqdm
from tts.modules.ar_dur.commons.layers import Embedding, LayerNorm
from tts.modules.ar_dur.commons.nar_tts_modules import PosEmb
from tts.modules.ar_dur.commons.rot_transformer import RotTransformerDecoderLayer
from tts.modules.ar_dur.commons.transformer import SinusoidalPositionalEmbedding
from tts.modules.ar_dur.commons.rel_transformer import RelTransformerEncoder
FS_ENCODERS = {
'rel_fft': lambda hp, dict_size: RelTransformerEncoder(
dict_size, hp['hidden_size'], hp['hidden_size'],
hp['ffn_hidden_size'], hp['num_heads'], hp['enc_layers'],
hp['enc_ffn_kernel_size'], hp['dropout'], prenet=hp['enc_prenet'], pre_ln=hp['enc_pre_ln']),
}
def fill_with_neg_inf2(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(-1e8).type_as(t)
def expand_states(h, mel2token):
h = F.pad(h, [0, 0, 1, 0])
mel2token_ = mel2token[..., None].repeat([1, 1, h.shape[-1]])
h = torch.gather(h, 1, mel2token_) # [B, T, H]
return h
class CodePredictor(nn.Module):
def __init__(self, hparams, hidden_size, dec_hidden_size, lm_num_layers, dict_size, code_size):
super().__init__()
self.hparams = deepcopy(hparams)
self.hparams['hidden_size'] = hidden_size
self.hidden_size = hidden_size
char_dict_size = hparams.get('char_dict_size', 4000)
if not hparams.get('lm_use_enc'):
self.encoder = nn.Embedding(dict_size, self.hidden_size, padding_idx=0)
if hparams.get('mega_use_char', True):
self.char_encoder = nn.Embedding(char_dict_size,
self.hidden_size, padding_idx=0)
else:
self.encoder = FS_ENCODERS[self.hparams['encoder_type']](self.hparams, dict_size)
if hparams.get('mega_use_char', True):
self.char_encoder = FS_ENCODERS[self.hparams['encoder_type']](self.hparams, char_dict_size)
if hparams['use_ph_pos_embed']:
self.ph_pos_embed = PosEmb(self.hidden_size)
self.char_empty_embed = nn.Embedding(1, self.hidden_size)
if hparams.get('use_bert_input'):
self.bert_input_proj = nn.Linear(768, self.hidden_size)
self.ling_label_embed_layers = nn.ModuleDict()
for k, s in zip(hparams['ling_labels'], hparams['ling_label_dict_size']):
self.ling_label_embed_layers[k] = Embedding(s + 3, self.hidden_size, padding_idx=0)
self.dec_hidden_size = dec_hidden_size
self.enc_proj = nn.Linear(self.hidden_size, dec_hidden_size)
self.code_emb = Embedding(code_size + 2, dec_hidden_size, 0)
self.use_pos_embed = hparams.get('use_pos_embed', False)
if self.use_pos_embed:
self.embed_positions = SinusoidalPositionalEmbedding(dec_hidden_size, 0, init_size=1024)
self.use_post_ln = hparams.get('use_post_ln', False)
self.layers = None
if not self.use_post_ln:
self.layer_norm = LayerNorm(dec_hidden_size)
self.code_size = code_size
self.project_out_dim = Linear(dec_hidden_size, code_size + 1, bias=True)
def forward_ling_encoder(
self, txt_tokens, ling_feas, char_tokens, ph2char, bert_embed, spk_id, spk_embed, mels_timbre):
ph_tokens = txt_tokens
hparams = self.hparams
ph_nonpadding = (ph_tokens > 0).float()[:, :, None] # [B, T_phone, 1]
x_spk = self.forward_style_embed(spk_embed, spk_id, mels_timbre)
# enc_ph
if not hparams.get('lm_use_enc'):
x_ph = self.encoder(ph_tokens)
x_ph = x_ph + sum(
[self.ling_label_embed_layers[k](ling_feas[k]) for k in hparams['ling_labels']]) \
if len(hparams['ling_labels']) > 0 else 0
x_ph = x_ph + x_spk
else:
# enc_ph
ph_enc_oembed = sum(
[self.ling_label_embed_layers[k](ling_feas[k]) for k in hparams['ling_labels']]) \
if len(hparams['ling_labels']) > 0 else 0
ph_enc_oembed = ph_enc_oembed + self.ph_pos_embed(
torch.arange(0, ph_tokens.shape[1])[None,].to(ph_tokens.device))
ph_enc_oembed = ph_enc_oembed + x_spk
ph_enc_oembed = ph_enc_oembed * ph_nonpadding
x_ph = self.encoder(ph_tokens, other_embeds=ph_enc_oembed)
# enc_char
if char_tokens is not None and ph2char is not None:
char_nonpadding = (char_tokens > 0).float()[:, :, None]
x_char = self.char_encoder(char_tokens)
empty_char = (ph2char > 100000).long()
ph2char = ph2char * (1 - empty_char)
x_char_phlevel = \
expand_states(x_char * char_nonpadding, ph2char) \
* (1 - empty_char)[..., None] + \
self.char_empty_embed(torch.zeros_like(ph_tokens)) * empty_char[..., None]
else:
x_char_phlevel = 0
# x_ling
x_ling = x_ph + x_char_phlevel
x_ling = x_ling * ph_nonpadding
x_ling = self.enc_proj(x_ling)
return x_ling
def sample_one_step(self, vq_pred):
hparams = self.hparams
if hparams.get('infer_top_k'):
top_k = hparams.get('infer_top_k')
temperature = hparams.get('infer_temperature', 1)
vq_pred = vq_pred[:, -1] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(vq_pred, min(top_k, vq_pred.size(-1)))
vq_pred[vq_pred < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(vq_pred, dim=-1)
# sample from the distribution
vq_pred = torch.multinomial(probs, num_samples=1)
else:
vq_pred = torch.argmax(F.softmax(vq_pred[:, -1], dim=-1), 1)
return vq_pred
def forward_style_embed(self, spk_embed=None, spk_id=None, mel_ref=None):
# add spk embed
style_embed = 0
if self.hparams['use_spk_embed']:
style_embed = style_embed + self.spk_embed_proj(spk_embed)[:, None, :]
if self.hparams['use_spk_id']:
style_embed = style_embed + self.spk_id_proj(spk_id)[:, None, :]
if self.hparams['use_spk_enc']:
style_embed = style_embed + self.spk_enc(mel_ref)[:, None, :]
return style_embed
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
if (
not hasattr(self, '_future_mask')
or self._future_mask is None
or self._future_mask.device != tensor.device
or self._future_mask.size(0) < dim
):
self._future_mask = torch.triu(fill_with_neg_inf2(tensor.new(dim, dim)), 1)
return self._future_mask[:dim, :dim]
class ARDurPredictor(CodePredictor):
def __init__(self, hparams, hidden_size, dec_hidden_size, lm_num_layers, dict_size, code_size, use_rot_embed=True,
op_version=1):
super().__init__(hparams, hidden_size, dec_hidden_size, lm_num_layers, dict_size, code_size)
self.use_rot_embed = use_rot_embed
bias = hparams.get('lm_bias', True)
if self.use_rot_embed:
self.layers = nn.ModuleList([])
self.layers.extend([
RotTransformerDecoderLayer(
dec_hidden_size, 0.0, kernel_size=1, ffn_hidden_size=dec_hidden_size * 4,
post_ln=self.use_post_ln, op_version=op_version, bias=bias)
for _ in range(lm_num_layers)
])
if hparams['dur_model_type'] == 'ar_mse':
self.project_out_dim = nn.Sequential(torch.nn.Linear(dec_hidden_size, 1), nn.Softplus())
else:
self.project_out_dim = torch.nn.Linear(dec_hidden_size, code_size + 1)
def forward(self, txt_tokens, ling_feas, char_tokens, ph2char, bert_embed,
prev_code, spk_id=None, spk_embed=None, mels_timbre=None, mel2ph=None,
incremental_state=None, x_ling=None, attn_mask=None, spk_pos_ids_flat=None,
prompt_length=None, cache_size=20, streaming=False):
x = self.code_emb(prev_code)
if x_ling is None:
x_ling = self.forward_ling_encoder(
txt_tokens, ling_feas, char_tokens, ph2char, bert_embed, spk_id, spk_embed, mels_timbre)
x_ling = x_ling.flatten(0, 1)
txt_tokens = txt_tokens.flatten(0, 1)
x_ling = x_ling[txt_tokens > 0][None]
# run decoder
self_attn_padding_mask = None
if self.use_pos_embed:
positions = self.embed_positions(
prev_code,
incremental_state=incremental_state
)
if incremental_state is not None:
x_ling = x_ling[:, x.shape[1] - 1:x.shape[1]]
if spk_pos_ids_flat is not None:
spk_pos_ids_flat = spk_pos_ids_flat[:, x.shape[1] - 1:x.shape[1]]
x = x[:, -1:]
if self.use_pos_embed:
positions = positions[:, -1:]
if streaming:
# Shift Pos: query pos is min(cache_size, idx)
spk_pos_ids_flat = torch.min(torch.LongTensor([prompt_length + cache_size]).to(x.device),
spk_pos_ids_flat)
# # B x T x C -> T x B x C
if self.use_pos_embed:
x = x + positions
x_ling = x_ling[:, :self.hparams['max_tokens']].contiguous()
T = min(self.hparams.get('max_tokens_per_item', 1e9), x_ling.shape[1])
x_ling = x_ling.reshape(-1, T, x_ling.shape[-1])
x = x + x_ling
x = x.transpose(0, 1)
for idx, layer in enumerate(self.layers):
if incremental_state is None:
self_attn_mask = self.buffered_future_mask(x)
if attn_mask is not None:
self_attn_mask = self_attn_mask + (1 - attn_mask.float()) * -1e8
self_attn_mask = self_attn_mask.clamp_min(-1e8)
else:
self_attn_mask = None
x, attn_weights = layer(
x,
incremental_state=incremental_state,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
spk_pos_ids_flat=spk_pos_ids_flat
)
if streaming and incremental_state != {}:
for k, v in incremental_state.items():
if 'attn_state' in k:
prev_key, prev_value = incremental_state[k]['prev_key'], incremental_state[k]['prev_value']
cur_length = prev_key.shape[2]
if cur_length - prompt_length > cache_size:
prev_key = torch.cat((prev_key[:, :, :prompt_length], prev_key[:, :, -cache_size:]), dim=2)
prev_value = torch.cat((prev_value[:, :, :prompt_length], prev_value[:, :, -cache_size:]),
dim=2)
incremental_state[k]['prev_key'], incremental_state[k]['prev_value'] = prev_key, prev_value
if not self.use_post_ln:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
x = self.project_out_dim(x)
return x
def infer(self, txt_tokens, ling_feas, char_tokens, ph2char, bert_embed,
spk_id=None, spk_embed=None, mels_timbre=None,
incremental_state=None, ctx_vqcodes=None, spk_pos_ids_flat=None, return_state=False,
first_step_min=0, return_probs=False, first_decoder_inp=None, dur_disturb=0.0, **kwargs):
if incremental_state is None:
incremental_state = {}
x_ling = self.forward_ling_encoder(
txt_tokens, ling_feas, char_tokens, ph2char, bert_embed,
spk_id, spk_embed, mels_timbre)
x_ling = x_ling.flatten(0, 1)
txt_tokens_ori = txt_tokens
txt_tokens_withpad = txt_tokens = txt_tokens.flatten(0, 1)
x_ling = x_ling[txt_tokens > 0][None]
txt_tokens = txt_tokens[txt_tokens > 0][None]
decoded = torch.zeros_like(txt_tokens)
decoded = F.pad(decoded, [1, 0], value=self.code_size + 1)
if incremental_state != {}:
if first_decoder_inp is None:
assert ctx_vqcodes is not None
decoded[:, :ctx_vqcodes.shape[1]] = ctx_vqcodes
ctx_vqcodes = None
else:
decoded[:, :1] = first_decoder_inp
probs = []
for step in range(decoded.shape[1] - 1):
vq_pred = self(txt_tokens, None, None, None, None,
decoded[:, :step + 1], None, None, None,
incremental_state=incremental_state, x_ling=x_ling,
spk_pos_ids_flat=spk_pos_ids_flat, **kwargs)
probs.append(vq_pred.cpu())
if ctx_vqcodes is None or step >= ctx_vqcodes.shape[1]:
if self.hparams['dur_model_type'] == 'ar_mse':
d = vq_pred[:, -1, 0]
if dur_disturb > 0 and step >= 1:
if random.random() > 0.5:
d = d * (1 + random.random() * dur_disturb)
else:
d = d / (1 + random.random() * dur_disturb)
d = torch.clamp_max(d, self.code_size - 1)
vq_pred = torch.round(d).long()
else:
vq_pred = self.sample_one_step(vq_pred)
decoded[:, step + 1] = torch.clamp_min(vq_pred, 1)
if step == 0:
decoded[:, step + 1] = torch.clamp_min(vq_pred, first_step_min)
else:
decoded[:, step + 1] = ctx_vqcodes[:, step]
decoded = decoded[:, 1:]
decoded_2d = torch.zeros_like(txt_tokens_ori)
decoded_2d.flatten(0, 1)[txt_tokens_withpad > 0] = decoded
if return_state:
return decoded_2d, incremental_state
if return_probs:
return decoded_2d, torch.cat(probs, 1)
return decoded_2d
def streaming_infer(self, txt_tokens, ling_feas, char_tokens, ph2char, bert_embed,
spk_id=None, spk_embed=None, mels_timbre=None,
incremental_state=None, ctx_vqcodes=None, spk_pos_ids_flat=None, return_state=False,
**kwargs):
if incremental_state is None:
incremental_state = {}
x_ling = self.forward_ling_encoder(
txt_tokens, ling_feas, char_tokens, ph2char, bert_embed,
spk_id, spk_embed, mels_timbre)
x_ling = x_ling.flatten(0, 1)
txt_tokens_ori = txt_tokens
txt_tokens_withpad = txt_tokens = txt_tokens.flatten(0, 1)
x_ling = x_ling[txt_tokens > 0][None]
txt_tokens = txt_tokens[txt_tokens > 0][None]
vq_decoded = torch.zeros_like(txt_tokens)
vq_decoded = F.pad(vq_decoded, [1, 0], value=self.code_size + 1)
if incremental_state != {}:
assert ctx_vqcodes is not None
vq_decoded[:, :ctx_vqcodes.shape[1]] = ctx_vqcodes
ctx_vqcodes = None
prompt_length = list(incremental_state.items())[0][1]['prev_key'].shape[2]
for step in tqdm(range(vq_decoded.shape[1] - 1), desc='AR Duration Predictor inference...'):
vq_pred = self(txt_tokens, None, None, None, None,
vq_decoded[:, :step + 1], None, None, None,
incremental_state=incremental_state, x_ling=x_ling,
spk_pos_ids_flat=spk_pos_ids_flat, prompt_length=prompt_length, streaming=True, **kwargs)
if ctx_vqcodes is None or step >= ctx_vqcodes.shape[1]:
if self.hparams['dur_model_type'] == 'ar_mse':
vq_pred = torch.round(vq_pred[:, -1, 0]).long()
else:
vq_pred = self.sample_one_step(vq_pred)
vq_decoded[:, step + 1] = vq_pred
else:
vq_decoded[:, step + 1] = ctx_vqcodes[:, step]
vq_decoded = vq_decoded[:, 1:]
vq_decoded_2d = torch.zeros_like(txt_tokens_ori)
vq_decoded_2d.flatten(0, 1)[txt_tokens_withpad > 0] = vq_decoded
if return_state:
return vq_decoded_2d, incremental_state
return vq_decoded_2d |