File size: 1,616 Bytes
593f3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import torch
from torch import nn


class SinusPositionEmbedding(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x, scale=1000):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
        emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb

class TimestepEmbedding(nn.Module):
    def __init__(self, dim, freq_embed_dim=256):
        super().__init__()
        self.time_embed = SinusPositionEmbedding(freq_embed_dim)
        self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))

    def forward(self, timestep):  # noqa: F821
        time_hidden = self.time_embed(timestep)
        time_hidden = time_hidden.to(timestep.dtype)
        time = self.time_mlp(time_hidden)  # b d
        return time