Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,361 Bytes
593f3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class AdaLNZero(nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(dim, dim * 6)
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb=None):
emb = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class AdaLNZero_Out(nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(dim, dim * 2)
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb):
emb = self.linear(self.silu(emb))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
return x
class Attention(nn.Module):
def __init__(self, encoder_dim, encoder_n_heads, max_seq_len):
super().__init__()
self.encoder_n_kv_heads = encoder_n_heads
model_parallel_size = 1
self.n_local_heads = encoder_n_heads // model_parallel_size
self.n_local_kv_heads = self.encoder_n_kv_heads // model_parallel_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = encoder_dim // encoder_n_heads
self.wq = nn.Linear(
encoder_dim,
encoder_n_heads * self.head_dim,
)
self.wk = nn.Linear(
encoder_dim,
self.encoder_n_kv_heads * self.head_dim,
)
self.wv = nn.Linear(
encoder_dim,
self.encoder_n_kv_heads * self.head_dim,
)
self.wo = nn.Linear(
encoder_n_heads * self.head_dim,
encoder_dim,
)
def forward(
self,
x: torch.Tensor,
start_pos: int,
freqs_cis: torch.Tensor,
mask: Optional[torch.Tensor],
):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
keys = xk.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
values = xv.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
output = F.scaled_dot_product_attention(xq, keys, values, mask[:, None, None, :], is_causal=False)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
return self.wo(output)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
):
super().__init__()
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(
dim, hidden_dim
)
self.w2 = nn.Linear(
hidden_dim, dim
)
def forward(self, x):
return self.w2(F.silu(self.w1(x)))
class TransformerBlock(nn.Module):
def __init__(self, encoder_dim, encoder_n_heads, max_seq_len):
super().__init__()
self.encoder_n_heads = encoder_n_heads
self.encoder_dim = encoder_dim
self.head_dim = encoder_dim // encoder_n_heads
self.attention = Attention(encoder_dim, encoder_n_heads, max_seq_len)
self.feed_forward = FeedForward(
dim=encoder_dim,
hidden_dim=2 * encoder_dim,
multiple_of=256,
ffn_dim_multiplier=None,
)
self.attention_norm = AdaLNZero(encoder_dim)
self.ffn_norm = nn.LayerNorm(encoder_dim, elementwise_affine=False, eps=1e-6)
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
start_pos: int,
freqs_cis: torch.Tensor,
mask: Optional[torch.Tensor],
):
"""
Perform a forward pass through the TransformerBlock.
Args:
x (torch.Tensor): Input tensor.
start_pos (int): Starting position for attention caching.
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None.
Returns:
torch.Tensor: Output tensor after applying attention and feedforward layers.
"""
# pre-norm & modulation for attention input
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attention_norm(x, emb=t)
# attention
attn_output = self.attention(norm, start_pos, freqs_cis, mask=mask)
# process attention output for input x
h = x + gate_msa.unsqueeze(1) * attn_output
norm = self.ffn_norm(h) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.feed_forward(norm)
out = h + gate_mlp.unsqueeze(1) * ff_output
return out
class Transformer(nn.Module):
def __init__(self, encoder_n_layers, encoder_dim, encoder_n_heads, max_seq_len):
super().__init__()
# Decoder
self.layers = torch.nn.ModuleList()
for _ in range(encoder_n_layers):
self.layers.append(TransformerBlock(encoder_dim, encoder_n_heads, max_seq_len))
self.norm = AdaLNZero_Out(encoder_dim)
self.out_proj = nn.Linear(encoder_dim, encoder_dim)
# Rope embedding
freqs_cis = precompute_freqs_cis(
encoder_dim // encoder_n_heads, max_seq_len
)
self.register_buffer("freqs_cis", torch.view_as_real(freqs_cis), persistent=False)
def forward(self, x, t, attn_mask, start_pos=0):
freqs_cis = torch.view_as_complex(self.freqs_cis.float())[start_pos: start_pos + x.size(1)]
for i, layer in enumerate(self.layers):
x = layer(x, t, start_pos, freqs_cis, attn_mask)
x = self.norm(x, t)
x = self.out_proj(x)
return x |