File size: 8,361 Bytes
593f3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Any, Optional, Tuple

import torch
import torch.nn.functional as F
from torch import nn


def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    return freqs_cis


def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(*shape)


def apply_rotary_emb(
        xq: torch.Tensor,
        xk: torch.Tensor,
        freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)


class AdaLNZero(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.silu = nn.SiLU()
        self.linear = nn.Linear(dim, dim * 6)
        self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, emb=None):
        emb = self.linear(self.silu(emb))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp


class AdaLNZero_Out(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.silu = nn.SiLU()
        self.linear = nn.Linear(dim, dim * 2)
        self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)

    def forward(self, x, emb):
        emb = self.linear(self.silu(emb))
        scale, shift = torch.chunk(emb, 2, dim=1)
        x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
        return x


class Attention(nn.Module):
    def __init__(self, encoder_dim, encoder_n_heads, max_seq_len):
        super().__init__()
        self.encoder_n_kv_heads = encoder_n_heads
        model_parallel_size = 1
        self.n_local_heads = encoder_n_heads // model_parallel_size
        self.n_local_kv_heads = self.encoder_n_kv_heads // model_parallel_size
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = encoder_dim // encoder_n_heads

        self.wq = nn.Linear(
            encoder_dim,
            encoder_n_heads * self.head_dim,
        )
        self.wk = nn.Linear(
            encoder_dim,
            self.encoder_n_kv_heads * self.head_dim,
        )
        self.wv = nn.Linear(
            encoder_dim,
            self.encoder_n_kv_heads * self.head_dim,
        )
        self.wo = nn.Linear(
            encoder_n_heads * self.head_dim,
            encoder_dim,
        )

    def forward(
            self,
            x: torch.Tensor,
            start_pos: int,
            freqs_cis: torch.Tensor,
            mask: Optional[torch.Tensor],
    ):
        bsz, seqlen, _ = x.shape
        xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

        xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
        xq = xq.transpose(1, 2)  # (bs, n_local_heads, seqlen, head_dim)
        keys = xk.transpose(1, 2)  # (bs, n_local_heads, cache_len + seqlen, head_dim)
        values = xv.transpose(1, 2)  # (bs, n_local_heads, cache_len + seqlen, head_dim)

        output = F.scaled_dot_product_attention(xq, keys, values, mask[:, None, None, :], is_causal=False)
        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
        return self.wo(output)


class FeedForward(nn.Module):
    def __init__(
            self,
            dim: int,
            hidden_dim: int,
            multiple_of: int,
            ffn_dim_multiplier: Optional[float],
    ):
        super().__init__()
        if ffn_dim_multiplier is not None:
            hidden_dim = int(ffn_dim_multiplier * hidden_dim)
        hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)

        self.w1 = nn.Linear(
            dim, hidden_dim
        )
        self.w2 = nn.Linear(
            hidden_dim, dim
        )

    def forward(self, x):
        return self.w2(F.silu(self.w1(x)))


class TransformerBlock(nn.Module):
    def __init__(self, encoder_dim, encoder_n_heads, max_seq_len):
        super().__init__()
        self.encoder_n_heads = encoder_n_heads
        self.encoder_dim = encoder_dim
        self.head_dim = encoder_dim // encoder_n_heads
        self.attention = Attention(encoder_dim, encoder_n_heads, max_seq_len)
        self.feed_forward = FeedForward(
            dim=encoder_dim,
            hidden_dim=2 * encoder_dim,
            multiple_of=256,
            ffn_dim_multiplier=None,
        )
        self.attention_norm = AdaLNZero(encoder_dim)
        self.ffn_norm = nn.LayerNorm(encoder_dim, elementwise_affine=False, eps=1e-6)

    def forward(
            self,
            x: torch.Tensor,
            t: torch.Tensor,
            start_pos: int,
            freqs_cis: torch.Tensor,
            mask: Optional[torch.Tensor],
    ):
        """
        Perform a forward pass through the TransformerBlock.

        Args:
            x (torch.Tensor): Input tensor.
            start_pos (int): Starting position for attention caching.
            freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
            mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None.

        Returns:
            torch.Tensor: Output tensor after applying attention and feedforward layers.

        """
        # pre-norm & modulation for attention input
        norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attention_norm(x, emb=t)

        # attention
        attn_output = self.attention(norm, start_pos, freqs_cis, mask=mask)

        # process attention output for input x
        h = x + gate_msa.unsqueeze(1) * attn_output

        norm = self.ffn_norm(h) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        ff_output = self.feed_forward(norm)
        out = h + gate_mlp.unsqueeze(1) * ff_output

        return out


class Transformer(nn.Module):
    def __init__(self, encoder_n_layers, encoder_dim, encoder_n_heads, max_seq_len):
        super().__init__()
        # Decoder
        self.layers = torch.nn.ModuleList()
        for _ in range(encoder_n_layers):
            self.layers.append(TransformerBlock(encoder_dim, encoder_n_heads, max_seq_len))

        self.norm = AdaLNZero_Out(encoder_dim)
        self.out_proj = nn.Linear(encoder_dim, encoder_dim)

        # Rope embedding
        freqs_cis = precompute_freqs_cis(
            encoder_dim // encoder_n_heads, max_seq_len
        )
        self.register_buffer("freqs_cis", torch.view_as_real(freqs_cis), persistent=False)
    
    def forward(self, x, t, attn_mask, start_pos=0):
        freqs_cis = torch.view_as_complex(self.freqs_cis.float())[start_pos: start_pos + x.size(1)]
        for i, layer in enumerate(self.layers):
            x = layer(x, t, start_pos, freqs_cis, attn_mask)
        x = self.norm(x, t)
        x = self.out_proj(x)
        return x