Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,095 Bytes
593f3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch.nn as nn
import torch.nn.functional as F
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
from torch.nn.utils import weight_norm, remove_weight_norm
from torch.nn import Conv1d
import numpy as np
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size*dilation - dilation)/2)
class Upsample(nn.Module):
def __init__(self, mult, r):
super(Upsample, self).__init__()
self.r = r
self.upsample = nn.Sequential(nn.Upsample(mode="nearest", scale_factor=r),
nn.LeakyReLU(0.2),
nn.ReflectionPad1d(3),
nn.utils.weight_norm(nn.Conv1d(mult, mult // 2, kernel_size=7, stride=1))
)
r_kernel = r if r >= 5 else 5
self.trans_upsample = nn.Sequential(nn.LeakyReLU(0.2),
nn.utils.weight_norm(nn.ConvTranspose1d(mult, mult // 2,
kernel_size=r_kernel * 2, stride=r,
padding=r_kernel - r // 2,
output_padding=r % 2)
))
def forward(self, x):
x = torch.sin(x) + x
out1 = self.upsample(x)
out2 = self.trans_upsample(x)
return out1 + out2
class Downsample(nn.Module):
def __init__(self, mult, r):
super(Downsample, self).__init__()
self.r = r
r_kernel = r if r >= 5 else 5
self.trans_downsample = nn.Sequential(nn.LeakyReLU(0.2),
nn.utils.weight_norm(nn.Conv1d(mult, mult * 2,
kernel_size=r_kernel * 2, stride=r,
padding=r_kernel - r // 2)
))
def forward(self, x):
out = self.trans_downsample(x)
return out
def weights_init(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def weights_zero_init(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.fill_(0.0)
m.bias.data.fill_(0.0)
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
class Audio2Mel(nn.Module):
def __init__(
self,
hop_length=300,
sampling_rate=24000,
n_mel_channels=80,
mel_fmin=0.,
mel_fmax=None,
frame_size=0.05,
device='cpu'
):
super().__init__()
##############################################
# FFT Parameters #
##############################################
self.n_fft = int(np.power(2., np.ceil(np.log(sampling_rate * frame_size) / np.log(2))))
window = torch.hann_window(int(sampling_rate * frame_size)).float()
mel_basis = librosa_mel_fn(
sampling_rate, self.n_fft, n_mel_channels, mel_fmin, mel_fmax
) # Mel filter (by librosa)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
self.register_buffer("window", window)
self.hop_length = hop_length
self.win_length = int(sampling_rate * frame_size)
self.sampling_rate = sampling_rate
self.n_mel_channels = n_mel_channels
def forward(self, audio):
fft = torch.stft(
audio.squeeze(1),
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=self.window,
center=True,
)
real_part, imag_part = fft.unbind(-1)
magnitude = torch.sqrt(torch.clamp(real_part ** 2 + imag_part ** 2, min=1e-5))
mel_output = torch.matmul(self.mel_basis, magnitude)
log_mel_spec = 20 * torch.log10(torch.clamp(mel_output, min=1e-5)) - 20
norm_mel = (log_mel_spec + 115.) / 115.
mel_comp = torch.clamp(norm_mel * 8. - 4., -4., 4.)
return mel_comp
class ResnetBlock(nn.Module):
def __init__(self, dim, dilation=1, dim_in=None):
super().__init__()
if dim_in is None:
dim_in = dim
self.block = nn.Sequential(
nn.LeakyReLU(0.2),
nn.ReflectionPad1d(dilation),
WNConv1d(dim_in, dim, kernel_size=3, dilation=dilation),
nn.LeakyReLU(0.2),
WNConv1d(dim, dim, kernel_size=1),
)
self.shortcut = WNConv1d(dim_in, dim, kernel_size=1)
def forward(self, x):
return self.shortcut(x) + self.block(x)
'''
参照hifigan(https://arxiv.org/pdf/2010.05646.pdf)v2结构
多尺度主要是kernel_size不同,3组并行卷积模块,每个卷积模块内部采用不同的串行dilation size,且中间交叉正常无dilation卷积层
'''
class ResBlockMRFV2(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlockMRFV2, self).__init__()
self.convs1 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2])))
])
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList([
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1))),
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
padding=get_padding(kernel_size, 1)))
])
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, 0.2)
xt = c1(xt)
xt = F.leaky_relu(xt, 0.2)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlockMRFV2Inter(torch.nn.Module):
def __init__(self, channels, kernel_size=3):
super(ResBlockMRFV2Inter, self).__init__()
self.block1 = ResBlockMRFV2(channels)
self.block2 = ResBlockMRFV2(channels, 7)
self.block3 = ResBlockMRFV2(channels, 11)
def forward(self, x):
xs = self.block1(x)
xs += self.block2(x)
xs += self.block3(x)
x = xs / 3
return x
class Generator(nn.Module):
def __init__(self, input_size_, ngf, n_residual_layers, num_band, args, ratios=[5, 5, 4, 3], onnx_export=False,
device='cpu'):
super().__init__()
self.hop_length = args.frame_shift
self.args = args
self.onnx_export = onnx_export
# ------------- Define upsample layers ----------------
mult = int(2 ** len(ratios))
model_up = []
input_size = input_size_
model_up += [
nn.ReflectionPad1d(3),
WNConv1d(input_size, mult * ngf, kernel_size=7, padding=0),
]
# Upsample to raw audio scale
for i, r in enumerate(ratios):
model_up += [Upsample(mult * ngf, r)]
model_up += [ResBlockMRFV2Inter(mult * ngf // 2)]
mult //= 2
model_up += [
nn.LeakyReLU(0.2),
nn.ReflectionPad1d(3),
WNConv1d(ngf, num_band, kernel_size=7, padding=0),
nn.Tanh(),
]
if not args.use_tanh:
model_up[-1] = nn.Conv1d(num_band, num_band, 1)
model_up[-2].apply(weights_zero_init)
self.model_up = nn.Sequential(*model_up)
self.apply(weights_init)
def forward(self, mel, step=None):
# mel input: (batch_size, seq_num, 80)
if self.onnx_export:
mel = mel.transpose(1, 2)
# on onnx, for engineering, mel input: (batch_size, 80, seq_num)
# Between Down and up
x = mel
# Upsample pipline
cnt_after_upsample = 0
for i, m in enumerate(self.model_up):
x = m(x)
if type(m) == Upsample:
cnt_after_upsample += 1
return x |