# MIT License # Copyright (c) 2022 OpenAI # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Copyright (c) [2022] [OpenAI] # Copyright (c) [2025] [Ziyue Jiang] # SPDX-License-Identifier: MIT # This file has been modified by Ziyue Jiang on 2025/03/19 # Original file was released under MIT, with the full license text # available at https://github.com/openai/whisper/blob/v20240930/LICENSE. # This modified file is released under the same license. from contextlib import contextmanager from typing import Dict, Iterable, Optional, Tuple import numpy as np import torch import torch.nn.functional as F from torch import Tensor, nn from torch.nn.functional import scaled_dot_product_attention SDPA_AVAILABLE = True class LayerNorm(nn.LayerNorm): def forward(self, x: Tensor) -> Tensor: return super().forward(x.float()).type(x.dtype) class Linear(nn.Linear): def forward(self, x: Tensor) -> Tensor: return F.linear( x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype), ) class Conv1d(nn.Conv1d): def _conv_forward( self, x: Tensor, weight: Tensor, bias: Optional[Tensor] ) -> Tensor: return super()._conv_forward( x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype) ) def sinusoids(length, channels, max_timescale=10000): """Returns sinusoids for positional embedding""" assert channels % 2 == 0 log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) @contextmanager def disable_sdpa(): prev_state = MultiHeadAttention.use_sdpa try: MultiHeadAttention.use_sdpa = False yield finally: MultiHeadAttention.use_sdpa = prev_state class MultiHeadAttention(nn.Module): use_sdpa = True def __init__(self, n_state: int, n_head: int): super().__init__() self.n_head = n_head self.query = Linear(n_state, n_state) self.key = Linear(n_state, n_state, bias=False) self.value = Linear(n_state, n_state) self.out = Linear(n_state, n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, casual: Optional[bool] = None ): q = self.query(x) if kv_cache is None or xa is None or self.key not in kv_cache: # hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors; # otherwise, perform key/value projections for self- or cross-attention as usual. k = self.key(x if xa is None else xa) v = self.value(x if xa is None else xa) else: # for cross-attention, calculate keys and values once and reuse in subsequent calls. k = kv_cache[self.key] v = kv_cache[self.value] wv = self.qkv_attention(q, k, v, mask, casual) return self.out(wv) def qkv_attention( self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None, casual: Optional[bool] = None ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: n_batch, n_ctx, n_state = q.shape scale = (n_state // self.n_head) ** -0.25 q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) a = scaled_dot_product_attention( q, k, v, is_causal=casual and n_ctx > 1, attn_mask=mask[:, None, None, :] if mask is not None else None ) out = a.permute(0, 2, 1, 3).flatten(start_dim=2) return out class ResidualAttentionBlock(nn.Module): def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): super().__init__() self.attn = MultiHeadAttention(n_state, n_head) self.attn_ln = LayerNorm(n_state) self.cross_attn = ( MultiHeadAttention(n_state, n_head) if cross_attention else None ) self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None n_mlp = n_state * 4 self.mlp = nn.Sequential( Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state) ) self.mlp_ln = LayerNorm(n_state) def forward( self, x: Tensor, xa: Optional[Tensor] = None, mask: Optional[Tensor] = None, kv_cache: Optional[dict] = None, casual: Optional[bool] = None, ): x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache, casual=casual) if self.cross_attn: # TODO: Cross attention mask x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache, casual=False) x = x + self.mlp(self.mlp_ln(x)) return x class AudioEncoder(nn.Module): def __init__( self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int ): super().__init__() self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1) self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state)) self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)] ) self.ln_post = LayerNorm(n_state) def forward(self, x: Tensor, attn_mask: Tensor): """ x : torch.Tensor, shape = (batch_size, n_mels, n_ctx) the mel spectrogram of the audio """ x = F.gelu(self.conv1(x)) x = F.gelu(self.conv2(x)) x = x.permute(0, 2, 1) # assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape" x = (x + self.positional_embedding[:x.size(1)]).to(x.dtype) for block in self.blocks: x = block(x, mask=attn_mask, casual=False) x = self.ln_post(x) return x class TextDecoder(nn.Module): def __init__( self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int ): super().__init__() self.token_embedding = nn.Embedding(n_vocab, n_state) self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state)) self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( [ ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer) ] ) self.ln = LayerNorm(n_state) self.out_proj = nn.Linear(n_state, n_vocab) def forward(self, x: Tensor, attn_mask: Tensor, xa: Tensor, kv_cache: Optional[dict] = None): """ x : torch.LongTensor, shape = (batch_size, <= n_ctx) the text tokens xa : torch.Tensor, shape = (batch_size, n_audio_ctx, n_audio_state) the encoded audio features to be attended on """ offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 x = ( self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]] ) x = x.to(xa.dtype) for block in self.blocks: x = block(x, xa, mask=attn_mask, kv_cache=kv_cache, casual=True) x = self.ln(x) # logits = ( # x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1) # ).float() logits = self.out_proj(x) return logits class Whisper(nn.Module): def __init__(self): super().__init__() self.n_vocab = 6800 self.n_text_layer = 6 self.n_text_head = 8 self.n_text_ctx = 2048 self.encoder = AudioEncoder( n_mels=80, n_ctx=3000, n_state=512, n_head=8, n_layer=6, ) self.decoder = TextDecoder( n_vocab=6800, n_ctx=2048, n_state=512, n_head=8, n_layer=6, ) def embed_audio(self, mel: torch.Tensor): return self.encoder(mel, None) def logits(self, tokens, audio_features, kv_cache=None): return self.decoder(tokens, None, audio_features, kv_cache=kv_cache) def forward( self, mel, mel_len, token, token_len ) -> Dict[str, torch.Tensor]: attn_mask_enc = self.sequence_mask(mel_len//2, device=mel.device) > 0 attn_mask_dec = self.sequence_mask(token_len, device=mel.device) > 0 return self.decoder(token, attn_mask_dec, self.encoder(mel, attn_mask_enc)) @property def device(self): return next(self.parameters()).device def install_kv_cache_hooks(self, cache: Optional[dict] = None): """ The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value tensors calculated for the previous positions. This method returns a dictionary that stores all caches, and the necessary hooks for the key and value projection modules that save the intermediate tensors to be reused during later calculations. Returns ------- cache : Dict[nn.Module, torch.Tensor] A dictionary object mapping the key/value projection modules to its cache hooks : List[RemovableHandle] List of PyTorch RemovableHandle objects to stop the hooks to be called """ cache = {**cache} if cache is not None else {} hooks = [] def save_to_cache(module, _, output): if module not in cache or output.shape[1] > self.n_text_ctx: # save as-is, for the first token or cross attention cache[module] = output else: cache[module] = torch.cat([cache[module], output], dim=1).detach() return cache[module] def install_hooks(layer: nn.Module): if isinstance(layer, MultiHeadAttention): hooks.append(layer.key.register_forward_hook(save_to_cache)) hooks.append(layer.value.register_forward_hook(save_to_cache)) self.decoder.apply(install_hooks) return cache, hooks def sequence_mask(self, seq_lens, max_len=None, device='cpu'): b = seq_lens.shape[0] if max_len is None: max_len = seq_lens.max() mask = torch.arange(max_len).unsqueeze(0).to(device) # [1, t] mask = mask < (seq_lens.unsqueeze(1)) # [1, t] + [b, 1] = [b, t] mask = mask.float() return mask