# Copyright 2025 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch from torch import nn import torch.nn.functional as F class LengthRegulator(torch.nn.Module): def __init__(self, pad_value=0.0): super(LengthRegulator, self).__init__() self.pad_value = pad_value def forward(self, dur, dur_padding=None, alpha=1.0): """ Example (no batch dim version): 1. dur = [2,2,3] 2. token_idx = [[1],[2],[3]], dur_cumsum = [2,4,7], dur_cumsum_prev = [0,2,4] 3. token_mask = [[1,1,0,0,0,0,0], [0,0,1,1,0,0,0], [0,0,0,0,1,1,1]] 4. token_idx * token_mask = [[1,1,0,0,0,0,0], [0,0,2,2,0,0,0], [0,0,0,0,3,3,3]] 5. (token_idx * token_mask).sum(0) = [1,1,2,2,3,3,3] :param dur: Batch of durations of each frame (B, T_txt) :param dur_padding: Batch of padding of each frame (B, T_txt) :param alpha: duration rescale coefficient :return: mel2ph (B, T_speech) assert alpha > 0 """ dur = torch.round(dur.float() * alpha).long() if dur_padding is not None: dur = dur * (1 - dur_padding.long()) token_idx = torch.arange(1, dur.shape[1] + 1)[None, :, None].to(dur.device) dur_cumsum = torch.cumsum(dur, 1) dur_cumsum_prev = F.pad(dur_cumsum, [1, -1], mode='constant', value=0) pos_idx = torch.arange(dur.sum(-1).max())[None, None].to(dur.device) token_mask = (pos_idx >= dur_cumsum_prev[:, :, None]) & (pos_idx < dur_cumsum[:, :, None]) mel2token = (token_idx * token_mask.long()).sum(1) return mel2token class PosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim) * -emb) self.emb = emb # TODO def forward(self, x): emb = x[:, :, None] * self.emb[None, None, :].to(x.device) emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb