# Copyright 2025 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch from typing import Optional, Tuple from torch import nn from torch.nn import Parameter, Linear from tts.modules.ar_dur.commons.layers import LayerNorm, Embedding from tts.modules.ar_dur.commons.transformer import TransformerFFNLayer, MultiheadAttention from tts.modules.ar_dur.commons.seq_utils import get_incremental_state, set_incremental_state, softmax, make_positions import torch.nn.functional as F DEFAULT_MAX_SOURCE_POSITIONS = 3000 DEFAULT_MAX_TARGET_POSITIONS = 3000 class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx, ) self.register_buffer('_float_tensor', torch.FloatTensor(1)) @staticmethod def get_embedding(num_embeddings, embedding_dim, padding_idx=None): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input.shape[:2] max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): # recompute/expand embeddings if needed self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx, ) self.weights = self.weights.to(self._float_tensor) if incremental_state is not None: # positions is the same for every token when decoding a single step pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) positions = make_positions(input, self.padding_idx) if positions is None else positions return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() def max_positions(self): """Maximum number of supported positions.""" return int(1e5) # an arbitrary large number class RotaryEmbeddings(nn.Module): cos: torch.Tensor sin: torch.Tensor theta: torch.Tensor def __init__( self, width: int, *, seq_len: int = 40000, base: int = 10000, device: Optional[torch.device] = None, ): """Rotary embeddings (Su et al., 2021) layer. The rotary embedding will be precomputed for up to 'seq _len' positions. The embedding will be recomputed when a longer sequence is found in the input. :param width: Rotary embedding dimensionality, must be even. :param seq_len: Number of positons to initially precompute. :param base: The base used for Θ_i, determines the cycle length of the embeddings. :param device: Device on which the module is to be initialized. """ super().__init__() if width % 2: raise ValueError(f"Width of rotary embeddings must be even, was: {width}") # Ignore allocations on the meta device as we don't persist our buffer, # i.e., we don't expect the backing tensor to be replaced with pretrained weights. if device is not None and device.type == "meta": device = None # Θ_i = 10000^(-2(i-1)/d) theta = torch.pow( base, -torch.arange(0, width, 2, dtype=torch.float, device=device) / width ) self.register_buffer("theta", theta, persistent=False) self._create_rotary_embed(width=width, length=seq_len) def _create_rotary_embed(self, *, width: int, length: int): # mΘ position = torch.arange(length, device=self.theta.device).unsqueeze(1) m_theta = position * self.theta.unsqueeze(0) # We apply both sin and cos twice (see Eq 15, 34), but the ordering # is changed for compatibility with most common implementations. m_theta = torch.cat([m_theta, m_theta], dim=-1) re_cos = m_theta.cos().view([length, width]) re_sin = m_theta.sin().view([length, width]) self.register_buffer("cos", re_cos, persistent=False) self.register_buffer("sin", re_sin, persistent=False) def _rotate(self, input: torch.Tensor): """Rotate the input tensor by half of its innermost width. input (Tensor): array to rotate. RETURNS (Tensor): rotated array. Shapes: input - (..., width) output - (..., width) """ half_idx = input.shape[-1] // 2 input_1 = -input[..., half_idx:] input_2 = input[..., :half_idx] return torch.cat([input_1, input_2], dim=-1) def forward(self, input: torch.Tensor, *, positions: Optional[torch.Tensor] = None): """ Apply rotary embeddings to an array. :param input: Array to apply the rotary embeddings to. :param positions: positions of the inputs. If no positions are provided, they are assumed to be [0, seq_len). :return: Array with the rotary embeddings applied. Shapes: input - (batch_size, num_heads, seq_len, width_per_head) positions - (batch_size, seq_len) output - (batch_size, num_heads, seq_len, width_per_head) """ batch_size, _, seq_len, width = input.shape if positions is None: # Fastpath: positions from [0..seq_len), avoid indexing. if self.cos.size(-2) < seq_len: self._create_rotary_embed(width=width, length=seq_len) rot_cos = self.cos[:seq_len, :].view(1, 1, seq_len, width) rot_sin = self.sin[:seq_len, :].view(1, 1, seq_len, width) else: max_len = int(positions.max()) + 1 if self.cos.size(-2) < max_len: self._create_rotary_embed(width=width, length=max_len) # Flatten positions to index cos/sin arrays, then unflatten. # # Example shapes: # # positions_flat - (batch_size * seq_len) # self.cos - (max_len, width) # rot_cos - (batch_size, seq_len, width) positions_flat = positions.view(-1) rot_cos = self.cos[positions_flat].view(batch_size, 1, seq_len, width) rot_sin = self.sin[positions_flat].view(batch_size, 1, seq_len, width) # Eq 34 with ordering changed for compatibility. return rot_cos * input + rot_sin * self._rotate(input) class RotMultiheadAttention(MultiheadAttention): def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False): super().__init__(embed_dim, num_heads, kdim=kdim, vdim=vdim, dropout=dropout, bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=self_attention, encoder_decoder_attention=encoder_decoder_attention) self.rotary_embeds = RotaryEmbeddings(width=embed_dim // num_heads) def forward( self, query, key, value, spk_pos_ids_flat=None, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None, before_softmax=False, need_head_weights=False, enc_dec_attn_constraint_mask=None, reset_attn_weight=None ): """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if 'prev_key' in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: # self-attention q, k, v = self.in_proj_qkv(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.in_proj_q(query) if key is None: assert value is None k = v = None else: k = self.in_proj_k(key) v = self.in_proj_v(key) else: q = self.in_proj_q(query) k = self.in_proj_k(key) v = self.in_proj_v(value) q = q * self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) # Apply rot embedding and store incremental_state q = self.rotary_embeds(q[None, :], positions=spk_pos_ids_flat)[0] if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if 'prev_key' in saved_state: prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: k = torch.cat((prev_key, k), dim=1) if 'prev_value' in saved_state: prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: v = torch.cat((prev_value, v), dim=1) saved_state['prev_key'], saved_state['prev_value'] = k.view(bsz, self.num_heads, -1, self.head_dim), v.view( bsz, self.num_heads, -1, self.head_dim) self._set_input_buffer(incremental_state, saved_state) if incremental_state is not None: key_pos = torch.arange(k.shape[-2], device=q.device).unsqueeze(0) else: key_pos = spk_pos_ids_flat k = self.rotary_embeds(k[None, :], positions=key_pos)[0] src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: if len(attn_mask.shape) == 2: attn_mask = attn_mask.unsqueeze(0) elif len(attn_mask.shape) == 3: attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( bsz * self.num_heads, tgt_len, src_len) attn_weights = attn_weights + attn_mask if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( enc_dec_attn_constraint_mask.unsqueeze(2).bool(), -1e8, ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), -1e8, ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = softmax(attn_weights, dim=-1) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) if reset_attn_weight is not None: if reset_attn_weight: self.last_attn_probs = attn_probs.detach() else: assert self.last_attn_probs is not None attn_probs = self.last_attn_probs attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) if need_weights: attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) else: attn_weights = None return attn, (attn_weights, attn_logits) class RotMultiheadAttention2(MultiheadAttention): def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False): super().__init__(embed_dim, num_heads, kdim=kdim, vdim=vdim, dropout=dropout, bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=self_attention, encoder_decoder_attention=encoder_decoder_attention) self.rotary_embeds = RotaryEmbeddings(width=embed_dim // num_heads) def forward( self, query, key, value, spk_pos_ids_flat=None, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None, before_softmax=False, need_head_weights=False, enc_dec_attn_constraint_mask=None, reset_attn_weight=None ): """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if 'prev_key' in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: # self-attention q, k, v = self.in_proj_qkv(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.in_proj_q(query) if key is None: assert value is None k = v = None else: k = self.in_proj_k(key) v = self.in_proj_v(key) else: q = self.in_proj_q(query) k = self.in_proj_k(key) v = self.in_proj_v(value) if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat( [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) # Apply rot embedding and store incremental_state q = self.rotary_embeds(q[None, :], positions=spk_pos_ids_flat)[0] if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if 'prev_key' in saved_state: prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) if static_kv: k = prev_key else: k = torch.cat((prev_key, k), dim=1) if 'prev_value' in saved_state: prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: v = torch.cat((prev_value, v), dim=1) saved_state['prev_key'], saved_state['prev_value'] = k.view(bsz, self.num_heads, -1, self.head_dim), v.view( bsz, self.num_heads, -1, self.head_dim) self._set_input_buffer(incremental_state, saved_state) key_pos = torch.arange(k.shape[-2], device=q.device).unsqueeze(0) k = self.rotary_embeds(k[None, :], positions=key_pos)[0] src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if attn_mask is not None: if len(attn_mask.shape) == 2: attn_mask = attn_mask.unsqueeze(0) elif len(attn_mask.shape) == 3: attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( bsz * self.num_heads, tgt_len, src_len) attn = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=0, is_causal=False) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_logits = None attn_weights = None return attn, (attn_weights, attn_logits) class RotDecSALayer(nn.Module): def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, ffn_hidden_size=1024, act='gelu', post_ln=False, bias=True): super().__init__() self.c = c self.dropout = dropout self.layer_norm1 = LayerNorm(c) self.self_attn = RotMultiheadAttention( c, num_heads, self_attention=True, dropout=attention_dropout, bias=False ) self.layer_norm2 = LayerNorm(c) self.ffn = TransformerFFNLayer( c, ffn_hidden_size, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act, bias=bias) self.post_ln = post_ln def forward( self, x, encoder_out=None, encoder_padding_mask=None, incremental_state=None, self_attn_mask=None, self_attn_padding_mask=None, attn_out=None, reset_attn_weight=None, spk_pos_ids_flat=None, **kwargs, ): layer_norm_training = kwargs.get('layer_norm_training', None) if layer_norm_training is not None: self.layer_norm1.training = layer_norm_training self.layer_norm2.training = layer_norm_training residual = x if not self.post_ln: x = self.layer_norm1(x) x, (attn_weights, _) = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, attn_mask=self_attn_mask, spk_pos_ids_flat=spk_pos_ids_flat ) x = F.dropout(x, self.dropout, training=self.training) x = residual + x if self.post_ln: x = self.layer_norm1(x) residual = x if not self.post_ln: x = self.layer_norm2(x) x = self.ffn(x, incremental_state=incremental_state) x = F.dropout(x, self.dropout, training=self.training) x = residual + x if self.post_ln: x = self.layer_norm2(x) return x, attn_weights def clear_buffer(self, input, encoder_out=None, encoder_padding_mask=None, incremental_state=None): self.encoder_attn.clear_buffer(incremental_state) self.ffn.clear_buffer(incremental_state) def set_buffer(self, name, tensor, incremental_state): return set_incremental_state(self, incremental_state, name, tensor) class RotDecSALayer2(RotDecSALayer): def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9, ffn_hidden_size=1024, act='gelu', post_ln=False): super().__init__(c, num_heads, dropout, attention_dropout, relu_dropout, kernel_size, ffn_hidden_size, act, post_ln) self.self_attn = RotMultiheadAttention2( c, num_heads, self_attention=True, dropout=attention_dropout, bias=False ) class RotTransformerDecoderLayer(nn.Module): def __init__(self, hidden_size, dropout, kernel_size=9, num_heads=8, ffn_hidden_size=1024, post_ln=False, op_version=1, bias=True): super().__init__() self.hidden_size = hidden_size self.dropout = dropout self.num_heads = num_heads if op_version == 1: self.op = RotDecSALayer( hidden_size, num_heads, dropout=dropout, attention_dropout=0.0, relu_dropout=dropout, kernel_size=kernel_size, ffn_hidden_size=ffn_hidden_size, post_ln=post_ln, bias=bias) else: self.op = RotDecSALayer2( hidden_size, num_heads, dropout=dropout, attention_dropout=0.0, relu_dropout=dropout, kernel_size=kernel_size, ffn_hidden_size=ffn_hidden_size, post_ln=post_ln) def forward(self, x, **kwargs): return self.op(x, **kwargs) def clear_buffer(self, *args): return self.op.clear_buffer(*args) def set_buffer(self, *args): return self.op.set_buffer(*args)