# Copyright 2025 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Optional, Tuple import torch import torch.nn.functional as F from torch import nn def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device) # type: ignore freqs = torch.outer(t, freqs).float() # type: ignore freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 return freqs_cis def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[1], x.shape[-1]) shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) freqs_cis = reshape_for_broadcast(freqs_cis, xq_) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) class AdaLNZero(nn.Module): def __init__(self, dim): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(dim, dim * 6) self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) def forward(self, x, emb=None): emb = self.linear(self.silu(emb)) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1) x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class AdaLNZero_Out(nn.Module): def __init__(self, dim): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(dim, dim * 2) self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) def forward(self, x, emb): emb = self.linear(self.silu(emb)) scale, shift = torch.chunk(emb, 2, dim=1) x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] return x class Attention(nn.Module): def __init__(self, encoder_dim, encoder_n_heads, max_seq_len): super().__init__() self.encoder_n_kv_heads = encoder_n_heads model_parallel_size = 1 self.n_local_heads = encoder_n_heads // model_parallel_size self.n_local_kv_heads = self.encoder_n_kv_heads // model_parallel_size self.n_rep = self.n_local_heads // self.n_local_kv_heads self.head_dim = encoder_dim // encoder_n_heads self.wq = nn.Linear( encoder_dim, encoder_n_heads * self.head_dim, ) self.wk = nn.Linear( encoder_dim, self.encoder_n_kv_heads * self.head_dim, ) self.wv = nn.Linear( encoder_dim, self.encoder_n_kv_heads * self.head_dim, ) self.wo = nn.Linear( encoder_n_heads * self.head_dim, encoder_dim, ) def forward( self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], ): bsz, seqlen, _ = x.shape xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) keys = xk.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim) values = xv.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim) output = F.scaled_dot_product_attention(xq, keys, values, mask[:, None, None, :], is_causal=False) output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) return self.wo(output) class FeedForward(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int, ffn_dim_multiplier: Optional[float], ): super().__init__() if ffn_dim_multiplier is not None: hidden_dim = int(ffn_dim_multiplier * hidden_dim) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = nn.Linear( dim, hidden_dim ) self.w2 = nn.Linear( hidden_dim, dim ) def forward(self, x): return self.w2(F.silu(self.w1(x))) class TransformerBlock(nn.Module): def __init__(self, encoder_dim, encoder_n_heads, max_seq_len): super().__init__() self.encoder_n_heads = encoder_n_heads self.encoder_dim = encoder_dim self.head_dim = encoder_dim // encoder_n_heads self.attention = Attention(encoder_dim, encoder_n_heads, max_seq_len) self.feed_forward = FeedForward( dim=encoder_dim, hidden_dim=2 * encoder_dim, multiple_of=256, ffn_dim_multiplier=None, ) self.attention_norm = AdaLNZero(encoder_dim) self.ffn_norm = nn.LayerNorm(encoder_dim, elementwise_affine=False, eps=1e-6) def forward( self, x: torch.Tensor, t: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], ): """ Perform a forward pass through the TransformerBlock. Args: x (torch.Tensor): Input tensor. start_pos (int): Starting position for attention caching. freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None. Returns: torch.Tensor: Output tensor after applying attention and feedforward layers. """ # pre-norm & modulation for attention input norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attention_norm(x, emb=t) # attention attn_output = self.attention(norm, start_pos, freqs_cis, mask=mask) # process attention output for input x h = x + gate_msa.unsqueeze(1) * attn_output norm = self.ffn_norm(h) * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.feed_forward(norm) out = h + gate_mlp.unsqueeze(1) * ff_output return out class Transformer(nn.Module): def __init__(self, encoder_n_layers, encoder_dim, encoder_n_heads, max_seq_len): super().__init__() # Decoder self.layers = torch.nn.ModuleList() for _ in range(encoder_n_layers): self.layers.append(TransformerBlock(encoder_dim, encoder_n_heads, max_seq_len)) self.norm = AdaLNZero_Out(encoder_dim) self.out_proj = nn.Linear(encoder_dim, encoder_dim) # Rope embedding freqs_cis = precompute_freqs_cis( encoder_dim // encoder_n_heads, max_seq_len ) self.register_buffer("freqs_cis", torch.view_as_real(freqs_cis), persistent=False) def forward(self, x, t, attn_mask, start_pos=0): freqs_cis = torch.view_as_complex(self.freqs_cis.float())[start_pos: start_pos + x.size(1)] for i, layer in enumerate(self.layers): x = layer(x, t, start_pos, freqs_cis, attn_mask) x = self.norm(x, t) x = self.out_proj(x) return x