# MIT License # Copyright (c) Meta Platforms, Inc. and affiliates. # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Copyright (c) [2023] [Meta Platforms, Inc. and affiliates.] # Copyright (c) [2025] [Ziyue Jiang] # SPDX-License-Identifier: MIT # This file has been modified by Ziyue Jiang on 2025/03/19 # Original file was released under MIT, with the full license text # available at https://github.com/facebookresearch/encodec/blob/gh-pages/LICENSE. # This modified file is released under the same license. """Convolutional layers wrappers and utilities.""" import math import typing as tp import warnings import einops import torch from torch import nn from torch.nn import functional as F from torch.nn.utils import spectral_norm, weight_norm CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm', 'time_layer_norm', 'layer_norm', 'time_group_norm']) def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module: assert norm in CONV_NORMALIZATIONS if norm == 'weight_norm': return weight_norm(module) elif norm == 'spectral_norm': return spectral_norm(module) else: return module def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module: assert norm in CONV_NORMALIZATIONS if norm == 'layer_norm': assert isinstance(module, nn.modules.conv._ConvNd) return ConvLayerNorm(module.out_channels, **norm_kwargs) elif norm == 'time_group_norm': if causal: raise ValueError("GroupNorm doesn't support causal evaluation.") assert isinstance(module, nn.modules.conv._ConvNd) return nn.GroupNorm(1, module.out_channels, **norm_kwargs) else: return nn.Identity() def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0) -> int: length = x.shape[-1] n_frames = (length - kernel_size + padding_total) / stride + 1 ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) return ideal_length - length def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.): length = x.shape[-1] padding_left, padding_right = paddings assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) if mode == 'reflect': max_pad = max(padding_left, padding_right) extra_pad = 0 if length <= max_pad: extra_pad = max_pad - length + 1 x = F.pad(x, (0, extra_pad)) padded = F.pad(x, paddings, mode, value) end = padded.shape[-1] - extra_pad return padded[..., :end] else: return F.pad(x, paddings, mode, value) class ConvLayerNorm(nn.LayerNorm): def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs): super().__init__(normalized_shape, **kwargs) def forward(self, x): x = einops.rearrange(x, 'b ... t -> b t ...') x = super().forward(x) x = einops.rearrange(x, 'b t ... -> b ... t') return class NormConv1d(nn.Module): def __init__(self, *args, causal: bool = False, norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs): super().__init__() self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm) self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs) self.norm_type = norm def forward(self, x): x = self.conv(x) x = self.norm(x) return x class SConv1d(nn.Module): def __init__(self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, dilation: int = 1, groups: int = 1, bias: bool = True, causal: bool = False, norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {}, pad_mode: str = 'reflect'): super().__init__() # warn user on unusual setup between dilation and stride if stride > 1 and dilation > 1: warnings.warn('SConv1d has been initialized with stride > 1 and dilation > 1' f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).') self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride, dilation=dilation, groups=groups, bias=bias, causal=causal, norm=norm, norm_kwargs=norm_kwargs) self.causal = causal self.pad_mode = pad_mode def forward(self, x): B, C, T = x.shape kernel_size = self.conv.conv.kernel_size[0] stride = self.conv.conv.stride[0] dilation = self.conv.conv.dilation[0] kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations padding_total = kernel_size - stride extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total) if self.causal: # Left padding for causal x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode) else: # Asymmetric padding required for odd strides padding_right = padding_total // 2 padding_left = padding_total - padding_right x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode) return self.conv(x)