# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile from PIL import Image import subprocess import spaces import torch import gradio as gr import string import random, time, os, math from src.flux.generate import generate_from_test_sample, seed_everything from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, load_dit_lora from src.utils.data_utils import get_train_config, image_grid, pil2tensor, json_dump, pad_to_square, cv2pil, merge_bboxes from eval.tools.face_id import FaceID from eval.tools.florence_sam import ObjectDetector import shutil import yaml import numpy as np dtype = torch.bfloat16 device = "cuda" config_path = "train/config/XVerse_config_demo.yaml" config = config_train = get_train_config(config_path) config["model"]["dit_quant"] = "int8-quanto" config["model"]["use_dit_lora"] = False model = CustomFluxPipeline( config, device, torch_dtype=dtype, ) model.pipe.set_progress_bar_config(leave=False) face_model = FaceID(device) detector = ObjectDetector(device) config = get_train_config(config_path) model.config = config store_attn_map = False ckpt_root = "~/.cache/huggingface/hub/XVerse" modulation_adapter = load_modulation_adapter(model, config, dtype, device, f"{ckpt_root}/modulation_adapter", is_training=False) model.add_modulation_adapter(modulation_adapter) if config["model"]["use_dit_lora"]: load_dit_lora(model, model.pipe, config, dtype, device, f"{ckpt_root}", is_training=False) num_inputs = 6 # 定义清空图像的函数,只返回四个 None def clear_images(): return [None, ]*num_inputs @spaces.GPU() def det_seg_img(image, label): if isinstance(image, str): image = Image.open(image).convert("RGB") instance_result_dict = detector.get_multiple_instances(image, label, min_size=image.size[0]//20) indices = list(range(len(instance_result_dict["instance_images"]))) ins, bbox = merge_instances(image, indices, instance_result_dict["instance_bboxes"], instance_result_dict["instance_images"]) return ins @spaces.GPU() def crop_face_img(image): if isinstance(image, str): image = Image.open(image).convert("RGB") # image = resize_keep_aspect_ratio(image, 1024) image = pad_to_square(image).resize((2048, 2048)) face_bbox = face_model.detect( (pil2tensor(image).unsqueeze(0) * 255).to(torch.uint8).to(device), 1.4 )[0] face = image.crop(face_bbox) return face @spaces.GPU() def vlm_img_caption(image): if isinstance(image, str): image = Image.open(image).convert("RGB") try: caption = detector.detector.caption(image, "").strip() if caption.endswith("."): caption = caption[:-1] except Exception as e: print(e) caption = "" caption = caption.lower() return caption def generate_random_string(length=4): letters = string.ascii_letters # 包含大小写字母的字符串 result_str = ''.join(random.choice(letters) for i in range(length)) return result_str def resize_keep_aspect_ratio(pil_image, target_size=1024): H, W = pil_image.height, pil_image.width target_area = target_size * target_size current_area = H * W scaling_factor = (target_area / current_area) ** 0.5 # sqrt(target_area / current_area) new_H = int(round(H * scaling_factor)) new_W = int(round(W * scaling_factor)) return pil_image.resize((new_W, new_H)) # 使用循环生成六个图像输入 images = [] captions = [] face_btns = [] det_btns = [] vlm_btns = [] accordions = [] idip_checkboxes = [] accordion_states = [] def open_accordion_on_example_selection(*args): print("enter open_accordion_on_example_selection") images = list(args[-18:-12]) outputs = [] for i, img in enumerate(images): if img is not None: print(f"open accordions {i}") outputs.append(True) else: print(f"close accordions {i}") outputs.append(False) print(outputs) return outputs @spaces.GPU def generate_image( prompt, cond_size, target_height, target_width, seed, vae_skip_iter, control_weight_lambda, double_attention, # 新增参数 single_attention, # 新增参数 latent_dblora_scale_str, latent_sblora_scale_str, vae_lora_scale, indexs, # 新增参数 *images_captions_faces, # Combine all unpacked arguments into one tuple ): torch.cuda.empty_cache() num_images = 4 # Determine the number of images, captions, and faces based on the indexs length images = list(images_captions_faces[:num_inputs]) captions = list(images_captions_faces[num_inputs:2 * num_inputs]) idips_checkboxes = list(images_captions_faces[2 * num_inputs:3 * num_inputs]) images = [images[i] for i in indexs] captions = [captions[i] for i in indexs] idips_checkboxes = [idips_checkboxes[i] for i in indexs] print(f"Length of images: {len(images)}") print(f"Length of captions: {len(captions)}") print(f"Indexs: {indexs}") print(f"Control weight lambda: {control_weight_lambda}") if control_weight_lambda != "no": parts = control_weight_lambda.split(',') new_parts = [] for part in parts: if ':' in part: left, right = part.split(':') values = right.split('/') # 保存整体值 global_value = values[0] id_value = values[1] ip_value = values[2] new_values = [global_value] for is_id in idips_checkboxes: if is_id: new_values.append(id_value) else: new_values.append(ip_value) new_part = f"{left}:{('/'.join(new_values))}" new_parts.append(new_part) else: new_parts.append(part) control_weight_lambda = ','.join(new_parts) print(f"Control weight lambda: {control_weight_lambda}") src_inputs = [] use_words = [] cur_run_time = time.strftime("%m%d-%H%M%S") tmp_dir_root = f"tmp/gradio_demo/{run_name}" temp_dir = f"{tmp_dir_root}/{cur_run_time}_{generate_random_string(4)}" os.makedirs(temp_dir, exist_ok=True) print(f"Temporary directory created: {temp_dir}") for i, (image_path, caption) in enumerate(zip(images, captions)): if image_path: if caption.startswith("a ") or caption.startswith("A "): word = caption[2:] else: word = caption if f"ENT{i+1}" in prompt: prompt = prompt.replace(f"ENT{i+1}", caption) image = resize_keep_aspect_ratio(Image.open(image_path), 768) save_path = f"{temp_dir}/tmp_resized_input_{i}.png" image.save(save_path) input_image_path = save_path src_inputs.append( { "image_path": input_image_path, "caption": caption } ) use_words.append((i, word, word)) test_sample = dict( input_images=[], position_delta=[0, -32], prompt=prompt, target_height=target_height, target_width=target_width, seed=seed, cond_size=cond_size, vae_skip_iter=vae_skip_iter, lora_scale=latent_dblora_scale_str, control_weight_lambda=control_weight_lambda, latent_sblora_scale=latent_sblora_scale_str, condition_sblora_scale=vae_lora_scale, double_attention=double_attention, single_attention=single_attention, ) if len(src_inputs) > 0: test_sample["modulation"] = [ dict( type="adapter", src_inputs=src_inputs, use_words=use_words, ), ] json_dump(test_sample, f"{temp_dir}/test_sample.json", 'utf-8') assert single_attention == True target_size = int(round((target_width * target_height) ** 0.5) // 16 * 16) print(test_sample) model.config["train"]["dataset"]["val_condition_size"] = cond_size model.config["train"]["dataset"]["val_target_size"] = target_size if control_weight_lambda == "no": control_weight_lambda = None if vae_skip_iter == "no": vae_skip_iter = None use_condition_sblora_control = True use_latent_sblora_control = True image = generate_from_test_sample( test_sample, model.pipe, model.config, num_images=num_images, target_height=target_height, target_width=target_width, seed=seed, store_attn_map=store_attn_map, vae_skip_iter=vae_skip_iter, # 使用新的参数 control_weight_lambda=control_weight_lambda, # 传递新的参数 double_attention=double_attention, # 新增参数 single_attention=single_attention, # 新增参数 ip_scale=latent_dblora_scale_str, use_latent_sblora_control=use_latent_sblora_control, latent_sblora_scale=latent_sblora_scale_str, use_condition_sblora_control=use_condition_sblora_control, condition_sblora_scale=vae_lora_scale, ) if isinstance(image, list): num_cols = 2 num_rows = int(math.ceil(num_images / num_cols)) image = image_grid(image, num_rows, num_cols) save_path = f"{temp_dir}/tmp_result.png" image.save(save_path) return image def create_image_input(index, open=True, indexs_state=None): accordion_state = gr.State(open) with gr.Column(): with gr.Accordion(f"Input Image {index + 1}", open=accordion_state.value) as accordion: image = gr.Image(type="filepath", label=f"Image {index + 1}") caption = gr.Textbox(label=f"Caption {index + 1}", value="") id_ip_checkbox = gr.Checkbox(value=False, label=f"ID or not {index + 1}", visible=True) with gr.Row(): vlm_btn = gr.Button("Auto Caption") det_btn = gr.Button("Det & Seg") face_btn = gr.Button("Crop Face") accordion.expand( inputs=[indexs_state], fn = lambda x: update_inputs(True, index, x), outputs=[indexs_state, accordion_state], ) accordion.collapse( inputs=[indexs_state], fn = lambda x: update_inputs(False, index, x), outputs=[indexs_state, accordion_state], ) return image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox def merge_instances(orig_img, indices, ins_bboxes, ins_images): orig_image_width, orig_image_height = orig_img.width, orig_img.height final_img = Image.new("RGB", (orig_image_width, orig_image_height), color=(255, 255, 255)) bboxes = [] for i in indices: bbox = np.array(ins_bboxes[i], dtype=int).tolist() bboxes.append(bbox) img = cv2pil(ins_images[i]) mask = (np.array(img)[..., :3] != 255).any(axis=-1) mask = Image.fromarray(mask.astype(np.uint8) * 255, mode='L') final_img.paste(img, (bbox[0], bbox[1]), mask) bbox = merge_bboxes(bboxes) img = final_img.crop(bbox) return img, bbox def change_accordion(at: bool, index: int, state: list): print(at, state) indexs = state if at: if index not in indexs: indexs.append(index) else: if index in indexs: indexs.remove(index) # 确保 indexs 是有序的 indexs.sort() print(indexs) return gr.Accordion(open=at), indexs def update_inputs(is_open, index, state: list): indexs = state if is_open: if index not in indexs: indexs.append(index) else: if index in indexs: indexs.remove(index) # 确保 indexs 是有序的 indexs.sort() print(indexs) return indexs, is_open if __name__ == "__main__": with gr.Blocks() as demo: indexs_state = gr.State([0, 1]) # 添加状态来存储 indexs gr.Markdown("### XVerse Demo") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", value="") clear_btn = gr.Button("清空输入图像") with gr.Row(): for i in range(num_inputs): image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox = create_image_input(i, open=i<2, indexs_state=indexs_state) images.append(image) idip_checkboxes.append(id_ip_checkbox) captions.append(caption) face_btns.append(face_btn) det_btns.append(det_btn) vlm_btns.append(vlm_btn) accordion_states.append(accordion_state) accordions.append(accordion) # 将其他设置参数压缩到 Advanced Accordion 内 with gr.Accordion("Advanced", open=False): # 使用 Row 和 Column 来布局四个图像和描述 with gr.Row(): target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="") target_width = gr.Slider(512, 1024, step=128, value=768, label="Generated Width", info="") cond_size = gr.Slider(256, 384, step=128, value=256, label="Condition Size", info="") with gr.Row(): # 修改 weight_id_ip_str 为两个 Slider weight_id = gr.Slider(0.1, 5, step=0.1, value=3, label="weight_id") weight_ip = gr.Slider(0.1, 5, step=0.1, value=5, label="weight_ip") with gr.Row(): # 修改 ip_scale_str 为 Slider,并添加 Textbox 显示转换后的格式 ip_scale_str = gr.Slider(0.5, 1.5, step=0.01, value=0.85, label="latent_lora_scale") vae_lora_scale = gr.Slider(0.5, 1.5, step=0.01, value=1.3, label="vae_lora_scale") with gr.Row(): # 修改 vae_skip_iter 为两个 Slider vae_skip_iter_s1 = gr.Slider(0, 1, step=0.01, value=0.05, label="vae_skip_iter_before") vae_skip_iter_s2 = gr.Slider(0, 1, step=0.01, value=0.8, label="vae_skip_iter_after") with gr.Row(): weight_id_ip_str = gr.Textbox( value="0-1:1/3/5", label="weight_id_ip_str", interactive=False, visible=False ) weight_id.change( lambda s1, s2: f"0-1:1/{s1}/{s2}", inputs=[weight_id, weight_ip], outputs=weight_id_ip_str ) weight_ip.change( lambda s1, s2: f"0-1:1/{s1}/{s2}", inputs=[weight_id, weight_ip], outputs=weight_id_ip_str ) vae_skip_iter = gr.Textbox( value="0-0.05:1,0.8-1:1", label="vae_skip_iter", interactive=False, visible=False ) vae_skip_iter_s1.change( lambda s1, s2: f"0-{s1}:1,{s2}-1:1", inputs=[vae_skip_iter_s1, vae_skip_iter_s2], outputs=vae_skip_iter ) vae_skip_iter_s2.change( lambda s1, s2: f"0-{s1}:1,{s2}-1:1", inputs=[vae_skip_iter_s1, vae_skip_iter_s2], outputs=vae_skip_iter ) with gr.Row(): db_latent_lora_scale_str = gr.Textbox( value="0-1:0.85", label="db_latent_lora_scale_str", interactive=False, visible=False ) sb_latent_lora_scale_str = gr.Textbox( value="0-1:0.85", label="sb_latent_lora_scale_str", interactive=False, visible=False ) vae_lora_scale_str = gr.Textbox( value="0-1:1.3", label="vae_lora_scale_str", interactive=False, visible=False ) vae_lora_scale.change( lambda s: f"0-1:{s}", inputs=vae_lora_scale, outputs=vae_lora_scale_str ) ip_scale_str.change( lambda s: [f"0-1:{s}", f"0-1:{s}"], inputs=ip_scale_str, outputs=[db_latent_lora_scale_str, sb_latent_lora_scale_str] ) with gr.Row(): double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False) single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False) with gr.Column(): output = gr.Image(label="生成的图像") seed = gr.Number(value=42, label="Seed", info="") gen_btn = gr.Button("生成图像") gr.Markdown("### Examples") gen_btn.click( generate_image, inputs=[ prompt, cond_size, target_height, target_width, seed, vae_skip_iter, weight_id_ip_str, double_attention, single_attention, db_latent_lora_scale_str, sb_latent_lora_scale_str, vae_lora_scale_str, indexs_state, # 传递 indexs 状态 *images, *captions, *idip_checkboxes, ], outputs=output ) # 修改清空函数的输出参数 clear_btn.click(clear_images, outputs=images) # 循环绑定 Det & Seg 和 Auto Caption 按钮的点击事件 for i in range(num_inputs): face_btns[i].click(crop_face_img, inputs=[images[i]], outputs=[images[i]]) det_btns[i].click(det_seg_img, inputs=[images[i], captions[i]], outputs=[images[i]]) vlm_btns[i].click(vlm_img_caption, inputs=[images[i]], outputs=[captions[i]]) accordion_states[i].change(fn=lambda x, state, index=i: change_accordion(x, index, state), inputs=[accordion_states[i], indexs_state], outputs=[accordions[i], indexs_state]) examples = gr.Examples( examples=[ [ "ENT1 wearing a tiny hat", 42, 256, 768, 768, 3, 5, 0.85, 1.3, 0.05, 0.8, "sample/hamster.jpg", None, None, None, None, None, "a hamster", None, None, None, None, None, False, False, False, False, False, False ], [ "ENT1 in a red dress is smiling", 42, 256, 768, 768, 3, 5, 0.85, 1.3, 0.05, 0.8, "sample/woman.jpg", None, None, None, None, None, "a woman", None, None, None, None, None, True, False, False, False, False, False ], [ "ENT1 and ENT2 standing together in a park.", 42, 256, 768, 768, 2, 5, 0.85, 1.3, 0.05, 0.8, "sample/woman.jpg", "sample/girl.jpg", None, None, None, None, "a woman", "a girl", None, None, None, None, True, True, False, False, False, False ], [ "ENT1, ENT2, and ENT3 standing together in a park.", 42, 256, 768, 768, 2.5, 5, 0.8, 1.2, 0.05, 0.8, "sample/woman.jpg", "sample/girl.jpg", "sample/old_man.jpg", None, None, None, "a woman", "a girl", "an old man", None, None, None, True, True, True, False, False, False ], ], inputs=[ prompt, seed, cond_size, target_height, target_width, weight_id, weight_ip, ip_scale_str, vae_lora_scale, vae_skip_iter_s1, vae_skip_iter_s2, *images, *captions, *idip_checkboxes ], outputs=accordion_states, fn=open_accordion_on_example_selection, run_on_click=True ) demo.queue() demo.launch()