Spaces:
Running
Running
File size: 8,882 Bytes
0a65f9d 8710952 0a65f9d 8710952 0a65f9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
import json
import requests
import os
import subprocess
import wget
from loguru import logger
from data_utils.line_based_parsing import parse_line_based_query, convert_to_lines
from data_utils.base_conversion_utils import (
build_schema_maps,
convert_modified_to_actual_code_string
)
from data_utils.schema_utils import schema_to_line_based
from configs.prompt_config import SYSTEM_PROMPT_V3, MODEL_PROMPT_V3
LLAMA_SERVER_URL = "http://127.0.0.1:8080/v1/chat/completions"
MODEL_PATH = "./models/unsloth.Q8_0.gguf"
def download_model():
"""Download the model if it doesn't exist"""
os.makedirs("./models", exist_ok=True)
if not os.path.exists(MODEL_PATH):
logger.info("Downloading model weights...")
wget.download(
"https://huggingface.co/ByteMaster01/NL2SQL/resolve/main/unsloth.Q8_0.gguf",
MODEL_PATH
)
logger.info("\nModel download complete!")
def start_llama_server():
"""Start the llama.cpp server with the downloaded model"""
try:
logger.info("Starting llama.cpp server...")
subprocess.Popen([
"python", "-m", "llama_cpp.server",
"--model", MODEL_PATH,
"--port", "8080"
])
logger.info("Server started successfully!")
except Exception as e:
logger.error(f"Failed to start server: {e}")
raise
def convert_line_parsed_to_mongo(line_parsed: str, schema: dict) -> str:
try:
modified_query = parse_line_based_query(line_parsed)
collection_name = schema["collections"][0]["name"]
in2out, _ = build_schema_maps(schema)
reconstructed_query = convert_modified_to_actual_code_string(modified_query, in2out, collection_name)
return reconstructed_query
except Exception as e:
logger.error(f"Error converting line parsed to MongoDB query: {e}")
return ""
def process_query(schema_text: str, nl_query: str, additional_info: str = "") -> str:
try:
# Parse schema from string to dict
schema = json.loads(schema_text)
# Convert schema to line-based format
line_based_schema = schema_to_line_based(schema)
# Format prompt with line-based schema
prompt = MODEL_PROMPT_V3.format(
schema=line_based_schema,
natural_language_query=nl_query,
additional_info=additional_info
)
# Prepare request payload
payload = {
"slot_id": 0,
"temperature": 0.1,
"n_keep": -1,
"cache_prompt": True,
"messages": [
{
"role": "system",
"content": SYSTEM_PROMPT_V3,
},
{
"role": "user",
"content": prompt
},
]
}
# Make request to llama.cpp server
response = requests.post(LLAMA_SERVER_URL, json=payload)
response.raise_for_status()
# Extract output from response
output = response.json()["choices"][0]["message"]["content"].strip()
logger.info(f"Model output: {output}")
# Convert line-based output to MongoDB query
mongo_query = convert_line_parsed_to_mongo(output, schema)
return [
mongo_query,
output
]
except Exception as e:
logger.error(f"Error processing query: {e}")
error_msg = f"Error: {str(e)}"
return [error_msg, error_msg, error_msg]
def create_interface():
# Create Gradio interface
iface = gr.Interface(
fn=process_query,
inputs=[
gr.Textbox(
label="Schema (JSON format)",
placeholder="Enter your MongoDB schema in JSON format...",
lines=10
),
gr.Textbox(
label="Natural Language Query",
placeholder="Enter your query in natural language..."
),
gr.Textbox(
label="Additional Info (Optional)",
placeholder="Enter any additional context (timestamps, etc)..."
),
],
outputs=[
gr.Code(label="MongoDB Query", language="javascript", lines=1),
gr.Textbox(label="Line-based Query")
],
title="Natural Language to MongoDB Query Converter",
description="Convert natural language queries to MongoDB queries based on your schema.",
examples=[
[
'''{
"collections": [{
"name": "events",
"document": {
"properties": {
"timestamp": {"bsonType": "int"},
"severity": {"bsonType": "int"},
"location": {
"bsonType": "object",
"properties": {
"lat": {"bsonType": "double"},
"lon": {"bsonType": "double"}
}
}
}
}
}]}''',
"Find all events with severity greater than 5",
""
],
[
'''{
"collections": [{
"name": "vehicles",
"document": {
"properties": {
"timestamp": {"bsonType": "int"},
"vehicle_details": {
"bsonType": "object",
"properties": {
"license_plate": {"bsonType": "string"},
"make": {"bsonType": "string"},
"model": {"bsonType": "string"},
"year": {"bsonType": "int"},
"color": {"bsonType": "string"}
}
},
"speed": {"bsonType": "double"},
"location": {
"bsonType": "object",
"properties": {
"lat": {"bsonType": "double"},
"lon": {"bsonType": "double"}
}
}
}
}
}]}''',
"Find red Toyota vehicles manufactured after 2020 with speed above 60",
""
],
[
'''{
"collections": [{
"name": "sensors",
"document": {
"properties": {
"sensor_id": {"bsonType": "string"},
"readings": {
"bsonType": "object",
"properties": {
"temperature": {"bsonType": "double"},
"humidity": {"bsonType": "double"},
"pressure": {"bsonType": "double"}
}
},
"timestamp": {"bsonType": "date"},
"status": {"bsonType": "string"}
}
}
}]}''',
"Find active sensors with temperature above 30 degrees in the last one day",
'''current date is 21 january 2025'''
],
[
'''{
"collections": [{
"name": "orders",
"document": {
"properties": {
"order_id": {"bsonType": "string"},
"customer": {
"bsonType": "object",
"properties": {
"id": {"bsonType": "string"},
"name": {"bsonType": "string"},
"email": {"bsonType": "string"}
}
},
"items": {
"bsonType": "array",
"items": {
"bsonType": "object",
"properties": {
"product_id": {"bsonType": "string"},
"quantity": {"bsonType": "int"},
"price": {"bsonType": "double"}
}
}
},
"total_amount": {"bsonType": "double"},
"status": {"bsonType": "string"},
"created_at": {"bsonType": "int"}
}
}
}]}''',
"Find orders with total amount greater than $100 that contain more than 3 items and were created in the last 24 hours",
'''{"current_time": 1685890800, "last_24_hours": 1685804400}'''
]
],
cache_examples=False,
)
return iface
if __name__ == "__main__":
# Download the model
download_model()
# Start the llama.cpp server
start_llama_server()
# Give the server a moment to start
import time
time.sleep(5)
# Launch the Gradio interface
print("Starting Gradio interface...")
iface = create_interface()
iface.launch() |