Spaces:
Running
Running
File size: 21,614 Bytes
0a65f9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
from typing import Any, Dict, Tuple, List
from loguru import logger
import json
import re
def _normalize_number(match):
num_str = match.group(0)
if '.' in num_str:
# Normalize float by removing trailing zeros and decimal point if needed
return str(float(num_str))
return num_str # Leave integers as is
def clean_query(query: str) -> str:
"""
Cleans the MongoDB query string by removing unnecessary whitespace and formatting.
to do:
- replace ' with "
- remove all spaces
- strip the query
- convert '''<query>''' to <query>
- remove \n
- remove empty brackets {}
"""
# replace \' with "
query = query.replace("'", "\"")
# Remove all spaces
query = query.replace(" ", "")
# Strip the query
query = query.strip()
# Convert '''<query>''' to <query>
if query.startswith("'''") and query.endswith("'''"):
query = query[3:-3]
# Remove \n
query = query.replace("\n", "")
# Remove empty brackets {}
query = query.replace("{}", "")
# Replace .toArray() with ""
query = query.replace(".toArray()", "")
# Normalize number strings
query = re.sub(r'(?<!["\w])(-?\d+\.\d+)(?!["\w])', _normalize_number, query)
return query
def extract_field_paths(properties: Dict[str, Any], prefix: str = "") -> Dict[str, str]:
"""
Recursively extract all leaf property names to full dot-paths
from a Mongo JSON Schema 'properties' dict.
Handles nested objects and arrays of objects.
Returns {field_name: full_path}
"""
paths: Dict[str, str] = {}
for key, val in properties.items():
current = prefix + key
# If nested object, recurse
if val.get("bsonType") == "object" and "properties" in val:
paths.update(extract_field_paths(val["properties"], current + "."))
# If array of objects, recurse into items
elif val.get("bsonType") == "array" and "items" in val and val["items"].get("bsonType") == "object" and "properties" in val["items"]:
paths.update(extract_field_paths(val["items"]["properties"], current + "."))
else:
paths[key] = current
return paths
def build_schema_maps(schema: Dict[str, Any]) -> Tuple[Dict[str, str], Dict[str, str]]:
"""
From a full JSON Schema, return two maps:
- input_to_output: field_name -> nested field path
- output_to_input: nested field path -> field_name
Handles both nested and flat schemas correctly.
"""
props = schema["collections"][0]["document"]["properties"]
input_to_output = extract_field_paths(props)
output_to_input = {v: k for k, v in input_to_output.items()}
return input_to_output, output_to_input
def set_nested(d: Dict[str, Any], keys: List[str], value: Any) -> None:
"""
Helper to set a nested value in a dict given a list of keys.
"""
for k in keys[:-1]:
d = d.setdefault(k, {})
d[keys[-1]] = value
def dot_notation_to_nested(dot: Dict[str, Any]) -> Dict[str, Any]:
"""
Convert a dict with dot-notation keys to nested dict structure.
E.g. {"a.b": v} -> {"a": {"b": v}}
"""
out: Dict[str, Any] = {}
for key, val in dot.items():
parts = key.split('.')
set_nested(out, parts, val)
return out
def nested_to_dot(d: Dict[str, Any], prefix: str = "") -> Dict[str, Any]:
"""
Convert nested dict to dot-notation keys. Treat operator-dicts as leaves.
"""
out: Dict[str, Any] = {}
for k, v in d.items():
new_pref = f"{prefix}.{k}" if prefix else k
# operator-dict leaf?
if isinstance(v, dict) and v and all(str(kk).startswith("$") for kk in v):
out[new_pref] = v
elif isinstance(v, dict):
out.update(nested_to_dot(v, new_pref))
else:
out[new_pref] = v
return out
def modified_to_actual_query(modified: Dict[str, Any],
input_to_output: Dict[str, str]) -> Dict[str, Any]:
"""
Convert a flat filter dict (field_name -> value/operator) into
a nested Mongo query dict according to the schema map.
If a key is not in the schema, treat it as dot notation.
"""
query: Dict[str, Any] = {}
for field_name, val in modified.items():
if field_name in input_to_output:
path = input_to_output[field_name].split('.')
set_nested(query, path, val)
else:
# fallback: treat as dot notation
set_nested(query, field_name.split('.'), val)
return query
def actual_to_modified_query(actual: Dict[str, Any],
output_to_input: Dict[str, str]) -> Dict[str, Any]:
"""
Flatten a nested Mongo query dict back into field_name -> value/operator.
Operator-dicts (keys starting with $) are treated as leaves.
If a path is not in output_to_input mapping, preserve it as-is.
"""
flat: Dict[str, Any] = {}
def recurse(d: Any, prefix: str = "") -> None:
# operator-dict leaf
if isinstance(d, dict) and d and all(k.startswith("$") for k in d):
if prefix in output_to_input:
flat[output_to_input[prefix]] = d
else:
flat[prefix] = d
return
# leaf non-dict
if not isinstance(d, dict):
if prefix in output_to_input:
flat[output_to_input[prefix]] = d
else:
flat[prefix] = d
return
# recurse deeper
for k, v in d.items():
new_pref = f"{prefix}.{k}" if prefix else k
recurse(v, new_pref)
recurse(actual)
return flat
def build_query_and_options(
modified: Dict[str, Any],
input_to_output: Dict[str, str]
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""
From a flat input dict that may include filter fields plus
special options (limit, skip, sort, projection), return:
- nested Mongo filter dict
- options dict with keys: limit, skip, sort, projection
"""
# extract special keys
options: Dict[str, Any] = {}
for opt in ("limit", "skip", "sort", "projection"): # in this order
if opt in modified:
options[opt] = modified.pop(opt)
# build nested filter
query = modified_to_actual_query(modified, input_to_output)
return query, options
def convert_modified_to_actual_code_string(
modified_input: dict,
in2out: dict,
collection_name: str = "events"
) -> str:
"""
Converts a modified (flat) dict into a MongoDB code string.
Omits the projection argument if opts['projection'] is empty.
Prints filter in dot-notation to match db.find syntax.
"""
import re
# Remove internal metadata fields before processing
modified_input = {k: v for k, v in modified_input.items() if not k.startswith('_')}
filter_dict, opts = build_query_and_options(modified_input.copy(), in2out)
# 1) dot-ify the filter dict
dot_filter = nested_to_dot(filter_dict)
filter_str = json.dumps(dot_filter, separators=(",", ":"))
# 2) Convert date strings back to appropriate MongoDB date format
# This regex matches ISO date strings like "2024-01-01T00:00:00Z"
date_pattern = r'"(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}Z)"'
# Check if there was a newDate string in the original query
# If so, we need to preserve that format instead of using ISODate
if "newDate" in modified_input.get("_original_query_format", ""):
filter_str = re.sub(date_pattern, r'newDate("\1")', filter_str)
else:
# Default to ISODate format
filter_str = re.sub(date_pattern, r'ISODate("\1")', filter_str)
# 3) Restore special time expressions that might have been converted
time_expr_pattern = r'"(newDate\.getTime\(\)-\d+)"'
filter_str = re.sub(time_expr_pattern, r'\1', filter_str)
# 4) only include projection if non-empty
projection = opts.get("projection", None)
projection_str = ""
if projection:
projection_str = json.dumps(projection, separators=(',', ':'))
# Also convert date strings in projection if any
if "newDate" in modified_input.get("_original_query_format", ""):
projection_str = re.sub(date_pattern, r'newDate("\1")', projection_str)
else:
projection_str = re.sub(date_pattern, r'ISODate("\1")', projection_str)
parts = [f"db.{collection_name}.find({filter_str}"
+ (f", {projection_str}" if projection else "")
+ ")"]
# 5) chain optional methods
if opts.get("sort"):
# Handle different sort formats
sort_value = opts['sort']
if isinstance(sort_value, list):
# Convert array format to object format
sort_obj = {}
for key, direction in sort_value:
sort_obj[key] = direction
sort_value = sort_obj
# For sort parameters, we want to preserve the MongoDB format exactly
# Convert the sort object to a string without quotes around the entire thing
if isinstance(sort_value, dict):
sort_items = []
for k, v in sort_value.items():
sort_items.append(f'"{k}":{v}')
sort_str = '{' + ','.join(sort_items) + '}'
else:
sort_str = str(sort_value)
parts.append(f".sort({sort_str})")
if opts.get("skip"):
parts.append(f".skip({opts['skip']})")
if opts.get("limit"):
parts.append(f".limit({opts['limit']})")
return "".join(parts)
def convert_actual_code_to_modified_dict(actual_code: str, out2in: dict) -> dict:
"""
Converts an actual MongoDB query string into a modified flat dictionary.
WARNING: This assumes the input is sanitized and safe (e.g., evaluated from a trusted source).
"""
import ast
import re
import json
from datetime import datetime, timedelta
# Store original number strings
original_numbers = {}
def store_number_strings(s: str) -> str:
def replace_number(match):
num_str = match.group(0)
# Only store if it has a decimal point (to preserve trailing zeros)
if '.' in num_str:
try:
num = float(num_str)
# Store the longest representation for this float
key = str(num)
if key not in original_numbers or len(num_str) > len(original_numbers[key]):
original_numbers[key] = num_str
except ValueError:
pass
return num_str
# Match numbers with optional decimal places and trailing zeros
number_pattern = r'-?\d+\.\d+'
re.sub(number_pattern, replace_number, s)
return s
def preprocess_mongo_syntax(query_str):
store_number_strings(query_str)
# Replace ISODate("..."), ISODate('...') with the date string
query_str = re.sub(r'ISODate\("([^"]+)"\)', r'"\1"', query_str)
query_str = re.sub(r"ISODate\('([^']+)'\)", r'"\1"', query_str)
# Handle newDate(newDate().getTime()-<expr>)
def newdate_minus_expr(match):
expr = match.group(1)
try:
# Evaluate the expression safely (only numbers and operators)
ms = int(eval(expr, {"__builtins__": None}, {}))
from datetime import datetime, timedelta
dt = datetime.utcnow() + timedelta(milliseconds=ms)
return '"' + dt.strftime('%Y-%m-%dT%H:%M:%SZ') + '"'
except Exception:
return '"1970-01-01T00:00:00Z"' # fallback
query_str = re.sub(r'newDate\(newDate\(\)\.getTime\(\)([-+*/0-9 ]+)\)', newdate_minus_expr, query_str)
# Replace newDate() with current UTC time
from datetime import datetime
now = datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ')
query_str = re.sub(r'newDate\(\)', f'"{now}"', query_str)
# Replace newDate(expr) with a string (handle both quote types)
query_str = re.sub(r'newDate\("([^"]+)"\)', r'"\1"', query_str)
query_str = re.sub(r"newDate\('([^']+)'\)", r'"\1"', query_str)
query_str = re.sub(r'newDate\((.*?)\)', r'"\1"', query_str)
# Fix unbalanced brackets
if query_str.count('{') > query_str.count('}'):
query_str += "}" * (query_str.count('{') - query_str.count('}'))
return query_str
# Extract filter dictionary from find() call using regex
def extract_filter_dict(code):
# Match db.collection.find(...) pattern
find_pattern = r'db\.[^.]+\.find\((.*?)(?:\)|,\s*{)'
find_match = re.search(find_pattern, code)
if not find_match:
raise ValueError("Could not extract filter parameters from find() call")
filter_str = find_match.group(1)
# If empty, return empty dict
if not filter_str.strip():
return {}
try:
# Try parsing as JSON
return json.loads(filter_str)
except json.JSONDecodeError:
# Try with ast.literal_eval
try:
return ast.literal_eval(filter_str)
except:
# Last resort - try fixing common issues and retry
fixed_str = filter_str.replace("'", '"')
try:
return json.loads(fixed_str)
except:
raise ValueError(f"Could not parse filter dictionary: {filter_str}")
# Extract projection dictionary from find() call using regex
def extract_projection_dict(code):
# Match find(..., {projection}) pattern
proj_pattern = r'find\([^{]*({[^}]*})[^{]*,\s*{([^}]*)}\s*\)'
proj_match = re.search(proj_pattern, code)
if not proj_match:
return None
proj_str = proj_match.group(2)
try:
# Try parsing as JSON
return json.loads(proj_str.replace("'", '"'))
except:
# Try with ast.literal_eval
try:
return ast.literal_eval(proj_str)
except:
return None
# Extract method parameters using regex for cases where ast.literal_eval fails
def extract_method_params(code, method_name):
# Look for .method_name({...}) or .method_name([...]) or .method_name(123) pattern
pattern = fr'\.{method_name}\s*\((.*?)\)(?:\.|\s*$)'
match = re.search(pattern, code)
if not match:
return None
param_str = match.group(1).strip()
# Empty parameter
if not param_str:
return None
# Try to handle different parameter types
try:
# Simple number?
if param_str.isdigit():
return int(param_str)
# JSON object or array?
try:
# Handle MongoDB format with double quotes
return json.loads(param_str.replace("'", '"'))
except json.JSONDecodeError:
# If direct JSON parsing fails, try to use ast.literal_eval
try:
return ast.literal_eval(param_str)
except:
# Return as is if all else fails
return param_str
except Exception as e:
# Return None if all parsing fails
logger.warning(f"Failed to parse parameter for {method_name}: {e}")
return None
# Pre-process the query
preprocessed_code = preprocess_mongo_syntax(actual_code)
try:
# Try to use our more robust regex-based parsing first
filter_dict = extract_filter_dict(preprocessed_code)
projection = extract_projection_dict(preprocessed_code)
# Handle empty projection
options = {"projection": projection} if projection else {}
# Extract sort, limit and skip parameters
sort_param = extract_method_params(preprocessed_code, "sort")
if sort_param is not None:
options["sort"] = sort_param
limit_param = extract_method_params(preprocessed_code, "limit")
if limit_param is not None:
options["limit"] = int(limit_param) if isinstance(limit_param, (int, str)) else limit_param
skip_param = extract_method_params(preprocessed_code, "skip")
if skip_param is not None:
options["skip"] = int(skip_param) if isinstance(skip_param, (int, str)) else skip_param
# Convert actual filter_dict back to modified
flat_filter = actual_to_modified_query(filter_dict, out2in)
# Merge projection, sort, limit into modified if relevant
for key in ("projection", "sort", "skip", "limit"):
if key in options and options[key] is not None:
flat_filter[key] = options[key]
# Add original number strings to the result
flat_filter['_original_numbers'] = original_numbers
return flat_filter
except Exception as e:
# Fall back to traditional AST-based parsing if regex fails
try:
node = ast.parse(preprocessed_code.strip(), mode='eval')
if not isinstance(node.body, ast.Call) or not hasattr(node.body.func, 'attr') or node.body.func.attr != "find":
raise ValueError("Expected .find(...) style query")
# extract find(filter, projection)
args = node.body.args
filter_dict = ast.literal_eval(args[0])
projection = ast.literal_eval(args[1]) if len(args) > 1 else None
# extract chained methods: sort, skip, limit
options = {"projection": projection} if projection else {}
current = node.body
while isinstance(current, ast.Call):
func = current.func
if hasattr(func, "attr"):
if func.attr == "sort":
options["sort"] = ast.literal_eval(current.args[0])
elif func.attr == "skip":
options["skip"] = ast.literal_eval(current.args[0])
elif func.attr == "limit":
options["limit"] = ast.literal_eval(current.args[0])
current = func.value if hasattr(func, "value") else None
# Convert actual filter_dict back to modified
flat_filter = actual_to_modified_query(filter_dict, out2in)
# Merge projection, sort, limit into modified if relevant
for key in ("projection", "sort", "skip", "limit"):
if key in options:
flat_filter[key] = options[key]
return flat_filter
except Exception as nested_e:
raise ValueError(f"Failed to parse MongoDB query string: {e}. AST fallback also failed: {nested_e}")
# -------------------- Example Usage --------------------
if __name__ == "__main__":
# Example JSON Schema
schema = {
"collections": [{
"name": "events",
"document": {
"properties": {
"event_id": {"bsonType": "int"},
"timestamp": {"bsonType": "int"},
"severity_level": {"bsonType": "int"},
"camera_id": {"bsonType": "int"},
"vehicle_details": {"bsonType": "object", "properties": {
"license_plate_number": {"bsonType": "string"},
"vehicle_type": {"bsonType": "string"},
"color": {"bsonType": "string"}
}},
"person_details": {"bsonType": "object", "properties": {
"match_id": {"bsonType": "int"},
"age": {"bsonType": "int"},
"gender": {"bsonType": "string"},
"clothing_description": {"bsonType": "string"}
}},
"location": {"bsonType": "object", "properties": {
"latitude": {"bsonType": "double"},
"longitude": {"bsonType": "double"}
}},
"sensor_readings": {"bsonType": "object", "properties": {
"temperature": {"bsonType": "double"},
"speed": {"bsonType": "double"},
"distance": {"bsonType": "double"}
}},
"incident_type": {"bsonType": "string"}
}
}
}],
"version": 1
}
# Build mappings once
in2out, out2in = build_schema_maps(schema)
# Flat user input including filters + options
modified_input = {
"license_plate_number": {"$regex": "^MH12"},
"timestamp": {"$gte": 1684080000, "$lte": 1684166400},
"severity_level": 3,
"limit": 50,
"skip": 10,
"sort": [("timestamp", -1)],
"projection": {
"vehicle_details.license_plate_number": 1,
"timestamp": 1,
"_id": 0
}
}
# Build actual nested query + options
filter_dict, opts = build_query_and_options(modified_input.copy(), in2out)
print("filter_dict =", filter_dict)
print("options =", opts)
# You can then do:
# cursor = (
# db.events.find(filter_dict, opts.get("projection"))
# .sort(opts.get("sort", []))
# .skip(opts.get("skip", 0))
# .limit(opts.get("limit", 0))
# ) |