|
|
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
import io |
|
import json |
|
import traceback |
|
|
|
|
|
from models import BioprocessModel |
|
|
|
|
|
|
|
USE_MODAL_FOR_LLM_ANALYSIS = False |
|
generate_analysis_from_modal = None |
|
|
|
def parse_bounds_str(bounds_str_input, num_params): |
|
"""Parsea una cadena de límites y devuelve listas para lower y upper bounds.""" |
|
|
|
bounds_str = str(bounds_str_input) |
|
|
|
|
|
if not bounds_str.strip(): |
|
print(f"Cadena de límites vacía para {num_params} params. Usando límites (-inf, inf).") |
|
return [-np.inf] * num_params, [np.inf] * num_params |
|
|
|
try: |
|
|
|
|
|
bounds_str = bounds_str.lower().replace('inf', 'np.inf') |
|
|
|
|
|
|
|
|
|
if not bounds_str.startswith('['): |
|
bounds_str = f"[{bounds_str}]" |
|
|
|
parsed_bounds_list = eval(bounds_str) |
|
|
|
if not isinstance(parsed_bounds_list, list): |
|
raise ValueError("La cadena de límites no evaluó a una lista.") |
|
|
|
if len(parsed_bounds_list) != num_params: |
|
raise ValueError(f"Número de tuplas de límites ({len(parsed_bounds_list)}) no coincide con el número de parámetros ({num_params}).") |
|
|
|
lower_bounds = [] |
|
upper_bounds = [] |
|
for item in parsed_bounds_list: |
|
if not (isinstance(item, (tuple, list)) and len(item) == 2): |
|
raise ValueError(f"Cada límite debe ser una tupla/lista de dos elementos (low, high). Se encontró: {item}") |
|
|
|
low = -np.inf if (item[0] is None or (isinstance(item[0], float) and np.isnan(item[0]))) else float(item[0]) |
|
high = np.inf if (item[1] is None or (isinstance(item[1], float) and np.isnan(item[1]))) else float(item[1]) |
|
lower_bounds.append(low) |
|
upper_bounds.append(high) |
|
|
|
return lower_bounds, upper_bounds |
|
except Exception as e: |
|
print(f"Error al parsear los límites '{bounds_str_input}': {e}. Usando límites por defecto (-inf, inf).") |
|
return [-np.inf] * num_params, [np.inf] * num_params |
|
|
|
|
|
def call_llm_analysis_service(prompt: str) -> str: |
|
"""Llama al servicio LLM (ya sea localmente o a través de Modal).""" |
|
if USE_MODAL_FOR_LLM_ANALYSIS and generate_analysis_from_modal: |
|
print("interface.py: Usando la función de análisis LLM de Modal...") |
|
try: |
|
|
|
return generate_analysis_from_modal(prompt) |
|
except Exception as e_modal_call: |
|
print(f"Error llamando a la función Modal LLM: {e_modal_call}") |
|
return f"Error al contactar el servicio de análisis IA (Modal): {e_modal_call}" |
|
else: |
|
|
|
print("interface.py: Usando la función de análisis LLM local (fallback)...") |
|
try: |
|
|
|
|
|
from config import MODEL_PATH, MAX_LENGTH, DEVICE |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
print(f"Fallback: Cargando modelo {MODEL_PATH} localmente en {DEVICE}...") |
|
tokenizer_local = AutoTokenizer.from_pretrained(MODEL_PATH) |
|
model_local = AutoModelForCausalLM.from_pretrained(MODEL_PATH).to(DEVICE) |
|
|
|
inputs = tokenizer_local(prompt, return_tensors="pt").to(DEVICE) |
|
with torch.no_grad(): |
|
outputs = model_local.generate( |
|
**inputs, |
|
max_new_tokens=MAX_LENGTH, |
|
eos_token_id=tokenizer_local.eos_token_id, |
|
pad_token_id=tokenizer_local.pad_token_id if tokenizer_local.pad_token_id else tokenizer_local.eos_token_id, |
|
do_sample=True, temperature=0.6, top_p=0.9 |
|
) |
|
input_len = inputs.input_ids.shape[1] |
|
analysis = tokenizer_local.decode(outputs[0][input_len:], skip_special_tokens=True) |
|
return analysis.strip() |
|
except Exception as e_local_llm: |
|
print(f"Error en el fallback LLM local: {e_local_llm}") |
|
return f"Análisis (fallback local): Error al cargar/ejecutar modelo LLM local: {e_local_llm}." |
|
|
|
|
|
def process_and_plot( |
|
file_obj, |
|
|
|
biomass_eq1_ui, biomass_eq2_ui, biomass_eq3_ui, |
|
biomass_param1_ui, biomass_param2_ui, biomass_param3_ui, |
|
biomass_bound1_ui, biomass_bound2_ui, biomass_bound3_ui, |
|
substrate_eq1_ui, substrate_eq2_ui, substrate_eq3_ui, |
|
substrate_param1_ui, substrate_param2_ui, substrate_param3_ui, |
|
substrate_bound1_ui, substrate_bound2_ui, substrate_bound3_ui, |
|
product_eq1_ui, product_eq2_ui, product_eq3_ui, |
|
product_param1_ui, product_param2_ui, product_param3_ui, |
|
product_bound1_ui, product_bound2_ui, product_bound3_ui, |
|
legend_position_ui, |
|
show_legend_ui, |
|
show_params_ui, |
|
biomass_eq_count_ui, |
|
substrate_eq_count_ui, |
|
product_eq_count_ui |
|
): |
|
analysis_text = "Iniciando análisis..." |
|
if file_obj is None: |
|
return None, "Error: Por favor, sube un archivo Excel." |
|
|
|
try: |
|
df = pd.read_excel(file_obj.name) |
|
except Exception as e: |
|
return None, f"Error al leer el archivo Excel: {e}\n{traceback.format_exc()}" |
|
|
|
expected_cols = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto'] |
|
for col in expected_cols: |
|
if col not in df.columns: |
|
return None, f"Error: La columna '{col}' no se encuentra en el archivo Excel." |
|
|
|
time_data = df['Tiempo'].values |
|
biomass_data_exp = df['Biomasa'].values |
|
substrate_data_exp = df['Sustrato'].values |
|
product_data_exp = df['Producto'].values |
|
|
|
|
|
active_biomass_eqs = int(biomass_eq_count_ui) |
|
active_substrate_eqs = int(substrate_eq_count_ui) |
|
active_product_eqs = int(product_eq_count_ui) |
|
|
|
|
|
all_eq_inputs = { |
|
'biomass': ( |
|
[biomass_eq1_ui, biomass_eq2_ui, biomass_eq3_ui][:active_biomass_eqs], |
|
[biomass_param1_ui, biomass_param2_ui, biomass_param3_ui][:active_biomass_eqs], |
|
[biomass_bound1_ui, biomass_bound2_ui, biomass_bound3_ui][:active_biomass_eqs], |
|
biomass_data_exp |
|
), |
|
'substrate': ( |
|
[substrate_eq1_ui, substrate_eq2_ui, substrate_eq3_ui][:active_substrate_eqs], |
|
[substrate_param1_ui, substrate_param2_ui, substrate_param3_ui][:active_substrate_eqs], |
|
[substrate_bound1_ui, substrate_bound2_ui, substrate_bound3_ui][:active_substrate_eqs], |
|
substrate_data_exp |
|
), |
|
'product': ( |
|
[product_eq1_ui, product_eq2_ui, product_eq3_ui][:active_product_eqs], |
|
[product_param1_ui, product_param2_ui, product_param3_ui][:active_product_eqs], |
|
[product_bound1_ui, product_bound2_ui, product_bound3_ui][:active_product_eqs], |
|
product_data_exp |
|
) |
|
} |
|
|
|
model_handler = BioprocessModel() |
|
|
|
fitted_results_for_plot = {'biomass': [], 'substrate': [], 'product': []} |
|
results_for_llm_prompt = {'biomass': [], 'substrate': [], 'product': []} |
|
biomass_params_for_s_p = None |
|
|
|
for model_type, (eq_list, param_str_list, bound_str_list, exp_data) in all_eq_inputs.items(): |
|
if not exp_data.any(): |
|
print(f"No hay datos experimentales para {model_type}, saltando ajuste.") |
|
continue |
|
|
|
for i in range(len(eq_list)): |
|
eq_str = eq_list[i] |
|
param_s = param_str_list[i] |
|
bound_s = bound_str_list[i] |
|
|
|
if not eq_str or not param_s: |
|
print(f"Ecuación o parámetros vacíos para {model_type} #{i+1}, saltando.") |
|
continue |
|
|
|
print(f"Procesando {model_type} #{i+1}: Eq='{eq_str}', Params='{param_s}'") |
|
|
|
try: |
|
model_handler.set_model(model_type, eq_str, param_s) |
|
num_p = len(model_handler.models[model_type]['params']) |
|
l_b, u_b = parse_bounds_str(bound_s, num_p) |
|
|
|
|
|
current_biomass_params = biomass_params_for_s_p if model_type in ['substrate', 'product'] else None |
|
|
|
y_pred, popt = model_handler.fit_model(model_type, time_data, exp_data, bounds=(l_b, u_b), biomass_params_fitted=current_biomass_params) |
|
|
|
|
|
current_params = model_handler.params[model_type] |
|
r2_val = model_handler.r2.get(model_type, float('nan')) |
|
rmse_val = model_handler.rmse.get(model_type, float('nan')) |
|
|
|
fitted_results_for_plot[model_type].append({ |
|
'equation': eq_str, |
|
'y_pred': y_pred, |
|
'params': current_params, |
|
'R2': r2_val |
|
}) |
|
results_for_llm_prompt[model_type].append({ |
|
'equation': eq_str, |
|
'params_fitted': current_params, |
|
'R2': r2_val, |
|
'RMSE': rmse_val |
|
}) |
|
|
|
|
|
if model_type == 'biomass' and biomass_params_for_s_p is None: |
|
biomass_params_for_s_p = current_params |
|
print(f"Parámetros de Biomasa (para S/P): {biomass_params_for_s_p}") |
|
|
|
except Exception as e: |
|
error_msg = f"Error ajustando {model_type} #{i+1} ('{eq_str}'): {e}\n{traceback.format_exc()}" |
|
print(error_msg) |
|
|
|
return None, error_msg |
|
|
|
|
|
fig, axs = plt.subplots(3, 1, figsize=(10, 18), sharex=True) |
|
plot_config = { |
|
axs[0]: (biomass_data_exp, 'Biomasa', fitted_results_for_plot['biomass']), |
|
axs[1]: (substrate_data_exp, 'Sustrato', fitted_results_for_plot['substrate']), |
|
axs[2]: (product_data_exp, 'Producto', fitted_results_for_plot['product']) |
|
} |
|
|
|
for ax, data_actual, ylabel, plot_results_list in plot_config.items(): |
|
ax.plot(time_data, data_actual, 'o', label=f'Datos {ylabel}', markersize=5, alpha=0.7) |
|
for idx, res_detail in enumerate(plot_results_list): |
|
label = f'Modelo {idx+1} (R²:{res_detail["R2"]:.3f})' |
|
|
|
ax.plot(time_data, res_detail['y_pred'], '-', label=label, linewidth=2) |
|
ax.set_xlabel('Tiempo') |
|
ax.set_ylabel(ylabel) |
|
ax.grid(True, linestyle=':', alpha=0.7) |
|
if show_legend_ui: |
|
ax.legend(loc=legend_position_ui, fontsize='small') |
|
|
|
if show_params_ui and plot_results_list: |
|
|
|
param_display_texts = [] |
|
for idx, res_detail in enumerate(plot_results_list): |
|
params_text = f"Modelo {idx+1}:\n" + "\n".join([f" {k}: {v:.4g}" for k,v in res_detail['params'].items()]) |
|
param_display_texts.append(params_text) |
|
full_param_text = "\n---\n".join(param_display_texts) |
|
|
|
|
|
text_x_pos = 0.02 |
|
text_y_pos = 0.98 |
|
v_align = 'top' |
|
if legend_position_ui and 'upper' in legend_position_ui: |
|
text_y_pos = 0.02 |
|
v_align = 'bottom' |
|
|
|
ax.text(text_x_pos, text_y_pos, full_param_text, transform=ax.transAxes, fontsize=7, |
|
verticalalignment=v_align, bbox=dict(boxstyle='round,pad=0.3', fc='lightyellow', alpha=0.8)) |
|
|
|
plt.tight_layout(rect=[0, 0, 1, 0.96]) |
|
fig.suptitle("Resultados del Ajuste de Modelos Cinéticos", fontsize=16) |
|
|
|
buf = io.BytesIO() |
|
plt.savefig(buf, format='png', dpi=150) |
|
buf.seek(0) |
|
image = Image.open(buf) |
|
plt.close(fig) |
|
|
|
|
|
prompt_intro = "Eres un experto en modelado cinético de bioprocesos. Analiza los siguientes resultados del ajuste de modelos a datos experimentales:\n\n" |
|
prompt_details = json.dumps(results_for_llm_prompt, indent=2, ensure_ascii=False) |
|
prompt_instructions = """\n\nPor favor, proporciona un análisis detallado y crítico en español, estructurado de la siguiente manera: |
|
1. **Resumen General:** Una breve descripción del experimento y qué se intentó modelar. |
|
2. **Análisis por Componente (Biomasa, Sustrato, Producto):** |
|
a. Para cada ecuación probada: |
|
i. Calidad del Ajuste: Evalúa el R² (cercano a 1 es ideal) y el RMSE (más bajo es mejor). Comenta si el ajuste es bueno, regular o pobre. |
|
ii. Interpretación de Parámetros: Explica brevemente qué representan los parámetros ajustados y si sus valores parecen razonables en un contexto de bioproceso (ej. tasas positivas, concentraciones no negativas). |
|
iii. Ecuación Específica: Menciona la ecuación usada. |
|
b. Comparación (si se probó más de una ecuación para un componente): ¿Cuál ecuación proporcionó el mejor ajuste y por qué? |
|
3. **Problemas y Limitaciones:** |
|
a. ¿Hay problemas evidentes (ej. R² muy bajo, parámetros físicamente no realistas, sobreajuste si se puede inferir, etc.)? |
|
b. ¿Qué limitaciones podrían tener los modelos o el proceso de ajuste? |
|
4. **Sugerencias y Próximos Pasos:** |
|
a. ¿Cómo se podría mejorar el modelado (ej. probar otras ecuaciones, transformar datos, revisar calidad de datos experimentales)? |
|
b. ¿Qué experimentos adicionales podrían realizarse para validar o refinar los modelos? |
|
5. **Conclusión Final:** Un veredicto general sobre el éxito del modelado y la utilidad de los resultados obtenidos. |
|
|
|
Utiliza un lenguaje claro y accesible, pero manteniendo el rigor técnico. El análisis debe ser útil para alguien que busca entender la cinética de su bioproceso.""" |
|
|
|
full_prompt = prompt_intro + prompt_details + prompt_instructions |
|
|
|
|
|
analysis_text = call_llm_analysis_service(full_prompt) |
|
|
|
return image, analysis_text |