|
import numpy as np |
|
import pandas as pd |
|
import statsmodels.formula.api as smf |
|
import statsmodels.api as sm |
|
import plotly.graph_objects as go |
|
from scipy.optimize import minimize |
|
import plotly.express as px |
|
from scipy.stats import t, f |
|
import gradio as gr |
|
import io |
|
import zipfile |
|
import tempfile |
|
from datetime import datetime |
|
import docx |
|
from docx.shared import Inches, Pt |
|
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT |
|
import os |
|
import itertools |
|
|
|
|
|
class RSM_BoxBehnken: |
|
def __init__(self, factor_names, factor_levels, y_name): |
|
""" |
|
Inicializa la clase con los nombres de factores, sus niveles y la variable dependiente. |
|
""" |
|
self.factor_names = factor_names |
|
self.factor_levels = factor_levels |
|
self.y_name = y_name |
|
self.n_factors = len(factor_names) |
|
self.data = None |
|
self.design = None |
|
self.model = None |
|
self.model_simplified = None |
|
self.optimized_results = None |
|
self.optimal_levels = None |
|
self.all_figures = [] |
|
|
|
def generate_box_behnken_design(self, center_runs=3): |
|
""" |
|
Genera el diseño Box-Behnken para el número de factores especificado. |
|
""" |
|
design = [] |
|
|
|
|
|
for combination in itertools.combinations(self.factor_names, 2): |
|
var1, var2 = combination |
|
for level1 in [-1, 0, 1]: |
|
for level2 in [-1, 0, 1]: |
|
|
|
if abs(level1) == 1 and abs(level2) == 1: |
|
run = {var: 0 for var in self.factor_names} |
|
run[var1] = level1 |
|
run[var2] = level2 |
|
design.append(run) |
|
|
|
|
|
for _ in range(center_runs): |
|
run = {var: 0 for var in self.factor_names} |
|
design.append(run) |
|
|
|
design_df = pd.DataFrame(design) |
|
self.design = design_df |
|
|
|
|
|
for i, factor in enumerate(self.factor_names): |
|
design_df[factor] = design_df[factor].apply(lambda x: self.coded_to_natural(x, i)) |
|
|
|
|
|
self.data = design_df.copy() |
|
|
|
return self.design |
|
|
|
def coded_to_natural(self, coded_value, factor_index): |
|
""" |
|
Convierte un valor codificado (-1, 0, 1) a su valor natural basado en los niveles del factor. |
|
""" |
|
min_val = self.factor_levels[factor_index]['min'] |
|
max_val = self.factor_levels[factor_index]['max'] |
|
return min_val + (coded_value + 1) * (max_val - min_val) / 2 |
|
|
|
def natural_to_coded(self, natural_value, factor_index): |
|
""" |
|
Convierte un valor natural a su valor codificado (-1, 0, 1) basado en los niveles del factor. |
|
""" |
|
min_val = self.factor_levels[factor_index]['min'] |
|
max_val = self.factor_levels[factor_index]['max'] |
|
return -1 + 2 * (natural_value - min_val) / (max_val - min_val) |
|
|
|
def set_response(self, response_values): |
|
""" |
|
Establece los valores de respuesta (variable dependiente) en el diseño. |
|
""" |
|
if len(response_values) != len(self.design): |
|
raise ValueError("El número de valores de respuesta no coincide con el número de corridas en el diseño.") |
|
self.data[self.y_name] = response_values |
|
|
|
def fit_model(self): |
|
""" |
|
Ajusta el modelo de segundo orden completo a los datos. |
|
""" |
|
formula = self._generate_formula() |
|
self.model = smf.ols(formula, data=self.data).fit() |
|
print("Modelo Completo:") |
|
print(self.model.summary()) |
|
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo") |
|
|
|
def fit_simplified_model(self): |
|
""" |
|
Ajusta el modelo de segundo orden simplificado a los datos, eliminando términos no significativos. |
|
""" |
|
formula = self._generate_formula(simplified=True) |
|
self.model_simplified = smf.ols(formula, data=self.data).fit() |
|
print("\nModelo Simplificado:") |
|
print(self.model_simplified.summary()) |
|
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado") |
|
|
|
def _generate_formula(self, simplified=False): |
|
""" |
|
Genera la fórmula del modelo según el número de factores y si es simplificado. |
|
""" |
|
terms = self.factor_names.copy() |
|
if simplified: |
|
|
|
terms += [f"I({var}**2)" for var in self.factor_names] |
|
else: |
|
|
|
terms += [f"I({var}**2)" for var in self.factor_names] |
|
terms += [f"{var1}:{var2}" for var1, var2 in itertools.combinations(self.factor_names, 2)] |
|
formula = f"{self.y_name} ~ " + " + ".join(terms) |
|
return formula |
|
|
|
def optimize(self, method='Nelder-Mead'): |
|
""" |
|
Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado. |
|
""" |
|
if self.model_simplified is None: |
|
print("Error: Ajusta el modelo simplificado primero.") |
|
return |
|
|
|
def objective_function(x): |
|
|
|
natural_values = [self.coded_to_natural(xi, i) for i, xi in enumerate(x)] |
|
|
|
prediction_df = pd.DataFrame([natural_values], columns=self.factor_names) |
|
|
|
for i in range(self.n_factors): |
|
prediction_df[self.factor_names[i]] = prediction_df[self.factor_names[i]].apply(lambda val: self.natural_to_coded(val, i)) |
|
|
|
return -self.model_simplified.predict(prediction_df)[0] |
|
|
|
|
|
bounds = [(-1, 1)] * self.n_factors |
|
x0 = [0] * self.n_factors |
|
|
|
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds) |
|
self.optimal_levels = self.optimized_results.x |
|
|
|
|
|
optimal_levels_natural = [ |
|
self.coded_to_natural(xi, i) for i, xi in enumerate(self.optimal_levels) |
|
] |
|
|
|
|
|
optimization_table = pd.DataFrame({ |
|
'Variable': self.factor_names, |
|
'Nivel Óptimo (Natural)': optimal_levels_natural, |
|
'Nivel Óptimo (Codificado)': self.optimal_levels |
|
}) |
|
|
|
return optimization_table.round(3) |
|
|
|
def generate_all_plots(self): |
|
""" |
|
Genera todas las gráficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado. |
|
Almacena las figuras en self.all_figures. |
|
""" |
|
if self.model_simplified is None: |
|
print("Error: Ajusta el modelo simplificado primero.") |
|
return |
|
|
|
self.all_figures = [] |
|
|
|
|
|
for fixed_index, fixed_variable in enumerate(self.factor_names): |
|
|
|
fixed_levels = self.factor_levels[fixed_index]['levels'] |
|
for level in fixed_levels: |
|
fig = self.plot_rsm_individual(fixed_variable, level) |
|
if fig is not None: |
|
self.all_figures.append(fig) |
|
|
|
def plot_rsm_individual(self, fixed_variable, fixed_level): |
|
""" |
|
Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica. |
|
""" |
|
|
|
varying_variables = [var for var in self.factor_names if var != fixed_variable] |
|
if len(varying_variables) < 2: |
|
print("Se requieren al menos dos variables que varían para generar el gráfico.") |
|
return None |
|
|
|
var1, var2 = varying_variables[:2] |
|
|
|
|
|
var1_levels = self.factor_levels[self.factor_names.index(var1)]['levels'] |
|
var2_levels = self.factor_levels[self.factor_names.index(var2)]['levels'] |
|
|
|
|
|
x_range = np.linspace(min(var1_levels), max(var1_levels), 100) |
|
y_range = np.linspace(min(var2_levels), max(var2_levels), 100) |
|
x_grid, y_grid = np.meshgrid(x_range, y_range) |
|
|
|
|
|
x_coded = np.array([self.natural_to_coded(x, self.factor_names.index(var1)) for x in x_grid.flatten()]).reshape(x_grid.shape) |
|
y_coded = np.array([self.natural_to_coded(y, self.factor_names.index(var2)) for y in y_grid.flatten()]).reshape(y_grid.shape) |
|
|
|
|
|
prediction_data = pd.DataFrame({ |
|
var1: x_coded.flatten(), |
|
var2: y_coded.flatten(), |
|
fixed_variable: self.natural_to_coded(fixed_level, self.factor_names.index(fixed_variable)) |
|
}) |
|
|
|
|
|
for var in self.factor_names: |
|
if var not in [var1, var2, fixed_variable]: |
|
prediction_data[var] = 0 |
|
|
|
|
|
prediction_data = prediction_data[self.factor_names] |
|
|
|
|
|
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid.shape) |
|
|
|
|
|
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid, y=y_grid, colorscale='Viridis', opacity=0.7, showscale=True)]) |
|
|
|
|
|
experiments = self.data.copy() |
|
|
|
fixed_level_coded = self.natural_to_coded(fixed_level, self.factor_names.index(fixed_variable)) |
|
|
|
experiments = experiments[np.isclose(experiments[fixed_variable], fixed_level, atol=1e-3)] |
|
fig.add_trace(go.Scatter3d( |
|
x=experiments[var1], |
|
y=experiments[var2], |
|
z=experiments[self.y_name], |
|
mode='markers+text', |
|
marker=dict(size=5, color='red'), |
|
text=[f"{val:.2f}" for val in experiments[self.y_name]], |
|
textposition='top center', |
|
name='Experimentos' |
|
)) |
|
|
|
|
|
fig.update_layout( |
|
scene=dict( |
|
xaxis_title=f"{var1} ({self.get_units(var1)})", |
|
yaxis_title=f"{var2} ({self.get_units(var2)})", |
|
zaxis_title=self.y_name, |
|
), |
|
title=f"{self.y_name} vs {var1} y {var2}<br><sup>{fixed_variable} fijo en {fixed_level} ({self.get_units(fixed_variable)})</sup>", |
|
height=800, |
|
width=1000, |
|
showlegend=True |
|
) |
|
|
|
return fig |
|
|
|
def get_units(self, variable_name): |
|
""" |
|
Define las unidades de las variables para etiquetas. |
|
Puedes personalizar este método según tus necesidades. |
|
""" |
|
units = { |
|
'Glucosa': 'g/L', |
|
'Extracto_de_Levadura': 'g/L', |
|
'Triptofano': 'g/L', |
|
'Tiempo': 'Horas', |
|
'AIA_ppm': 'ppm', |
|
|
|
} |
|
return units.get(variable_name, '') |
|
|
|
def pareto_chart(self, model, title): |
|
""" |
|
Genera un diagrama de Pareto para los efectos estandarizados de un modelo, |
|
incluyendo la línea de significancia. |
|
""" |
|
|
|
tvalues = model.tvalues.drop('Intercept') |
|
abs_tvalues = tvalues.abs() |
|
sorted_idx = abs_tvalues.sort_values(ascending=False).index |
|
sorted_tvalues = abs_tvalues[sorted_idx] |
|
sorted_names = sorted_idx |
|
|
|
|
|
alpha = 0.05 |
|
dof = model.df_resid |
|
t_critical = t.ppf(1 - alpha / 2, dof) |
|
|
|
|
|
fig = px.bar( |
|
x=sorted_tvalues.round(3), |
|
y=sorted_names, |
|
orientation='h', |
|
labels={'x': 'Efecto Estandarizado', 'y': 'Término'}, |
|
title=title |
|
) |
|
fig.update_yaxes(autorange="reversed") |
|
|
|
|
|
fig.add_vline(x=t_critical, line_dash="dot", |
|
annotation_text=f"t crítico = {t_critical:.3f}", |
|
annotation_position="bottom right") |
|
|
|
return fig |
|
|
|
def get_simplified_equation(self): |
|
""" |
|
Retorna la ecuación del modelo simplificado como una cadena de texto. |
|
""" |
|
if self.model_simplified is None: |
|
print("Error: Ajusta el modelo simplificado primero.") |
|
return None |
|
|
|
coefficients = self.model_simplified.params |
|
equation = f"{self.y_name} = {coefficients['Intercept']:.3f}" |
|
|
|
for term, coef in coefficients.items(): |
|
if term != 'Intercept': |
|
if term in self.factor_names: |
|
equation += f" + {coef:.3f}*{term}" |
|
elif term.startswith("I("): |
|
equation += f" + {coef:.3f}*{term[2:-1]}" |
|
else: |
|
equation += f" + {coef:.3f}*{term.replace(':', '×')}" |
|
|
|
return equation |
|
|
|
def generate_prediction_table(self): |
|
""" |
|
Genera una tabla con los valores actuales, predichos y residuales. |
|
""" |
|
if self.model_simplified is None: |
|
print("Error: Ajusta el modelo simplificado primero.") |
|
return None |
|
|
|
self.data['Predicho'] = self.model_simplified.predict(self.data) |
|
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho'] |
|
|
|
return self.data[[self.y_name, 'Predicho', 'Residual']].round(3) |
|
|
|
def calculate_contribution_percentage(self): |
|
""" |
|
Calcula el porcentaje de contribución de cada factor a la variabilidad de la respuesta (AIA). |
|
""" |
|
if self.model_simplified is None: |
|
print("Error: Ajusta el modelo simplificado primero.") |
|
return None |
|
|
|
|
|
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2) |
|
|
|
|
|
ss_total = anova_table['sum_sq'].sum() |
|
|
|
|
|
contribution_table = pd.DataFrame({ |
|
'Factor': [], |
|
'Suma de Cuadrados': [], |
|
'% Contribución': [] |
|
}) |
|
|
|
|
|
for index, row in anova_table.iterrows(): |
|
if index != 'Residual': |
|
factor_name = index |
|
if 'I(' in factor_name: |
|
factor_name = factor_name.replace('I(', '').replace(')', '').replace('** 2', '^2') |
|
|
|
ss_factor = row['sum_sq'] |
|
contribution_percentage = (ss_factor / ss_total) * 100 |
|
|
|
contribution_table = pd.concat([contribution_table, pd.DataFrame({ |
|
'Factor': [factor_name], |
|
'Suma de Cuadrados': [ss_factor], |
|
'% Contribución': [contribution_percentage] |
|
})], ignore_index=True) |
|
|
|
return contribution_table.round(3) |
|
|
|
def calculate_detailed_anova(self): |
|
""" |
|
Calcula la tabla ANOVA detallada con la descomposición del error residual. |
|
""" |
|
if self.model_simplified is None: |
|
print("Error: Ajusta el modelo simplificado primero.") |
|
return None |
|
|
|
|
|
|
|
formula_reduced = self._generate_formula(simplified=True) |
|
model_reduced = smf.ols(formula_reduced, data=self.data).fit() |
|
|
|
|
|
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2) |
|
|
|
|
|
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2) |
|
|
|
|
|
df_total = len(self.data) - 1 |
|
|
|
|
|
ss_regression = anova_reduced['sum_sq'].drop('Residual').sum() |
|
|
|
|
|
df_regression = len(anova_reduced) - 1 |
|
|
|
|
|
ss_residual = self.model_simplified.ssr |
|
df_residual = self.model_simplified.df_resid |
|
|
|
|
|
|
|
ss_pure_error = np.nan |
|
df_pure_error = np.nan |
|
|
|
|
|
ss_lack_of_fit = ss_residual - ss_pure_error if not np.isnan(ss_pure_error) else np.nan |
|
df_lack_of_fit = df_residual - df_pure_error if not np.isnan(df_pure_error) else np.nan |
|
|
|
|
|
ms_regression = ss_regression / df_regression |
|
ms_residual = ss_residual / df_residual |
|
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit if not np.isnan(ss_lack_of_fit) else np.nan |
|
ms_pure_error = ss_pure_error / df_pure_error if not np.isnan(ss_pure_error) else np.nan |
|
|
|
|
|
f_lack_of_fit = ms_lack_of_fit / ms_pure_error if not np.isnan(ms_lack_of_fit) else np.nan |
|
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) if not np.isnan(f_lack_of_fit) else np.nan |
|
|
|
|
|
detailed_anova_table = pd.DataFrame({ |
|
'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'], |
|
'Suma de Cuadrados': [ss_regression, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total], |
|
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total], |
|
'Cuadrado Medio': [ms_regression, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan], |
|
'F': [np.nan, np.nan, f_lack_of_fit, np.nan, np.nan], |
|
'Valor p': [np.nan, np.nan, p_lack_of_fit, np.nan, np.nan] |
|
}) |
|
|
|
|
|
ss_curvature = 0 |
|
for var in self.factor_names: |
|
curvature_term = f"I({var}**2)" |
|
if curvature_term in anova_reduced.index: |
|
ss_curvature += anova_reduced.loc[curvature_term, 'sum_sq'] |
|
df_curvature = self.n_factors |
|
|
|
|
|
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', ss_curvature, df_curvature, ss_curvature / df_curvature, np.nan, np.nan] |
|
|
|
|
|
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4]) |
|
|
|
|
|
detailed_anova_table = detailed_anova_table.reset_index(drop=True) |
|
|
|
return detailed_anova_table.round(3) |
|
|
|
def get_all_tables(self): |
|
""" |
|
Obtiene todas las tablas generadas para ser exportadas a Excel y Word. |
|
""" |
|
prediction_table = self.generate_prediction_table() |
|
contribution_table = self.calculate_contribution_percentage() |
|
detailed_anova_table = self.calculate_detailed_anova() |
|
|
|
return { |
|
'Predicciones': prediction_table, |
|
'% Contribución': contribution_table, |
|
'ANOVA Detallada': detailed_anova_table |
|
} |
|
|
|
def save_figures_to_zip(self): |
|
""" |
|
Guarda todas las figuras almacenadas en self.all_figures a un archivo ZIP en memoria. |
|
""" |
|
if not self.all_figures: |
|
return None |
|
|
|
zip_buffer = io.BytesIO() |
|
with zipfile.ZipFile(zip_buffer, 'w') as zip_file: |
|
for idx, fig in enumerate(self.all_figures, start=1): |
|
img_bytes = fig.to_image(format="png") |
|
zip_file.writestr(f'Grafico_{idx}.png', img_bytes) |
|
zip_buffer.seek(0) |
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as temp_file: |
|
temp_file.write(zip_buffer.read()) |
|
temp_path = temp_file.name |
|
|
|
return temp_path |
|
|
|
def save_fig_to_bytes(self, fig): |
|
""" |
|
Convierte una figura Plotly a bytes en formato PNG. |
|
""" |
|
return fig.to_image(format="png") |
|
|
|
def save_all_figures_png(self): |
|
""" |
|
Guarda todas las figuras en archivos PNG temporales y retorna las rutas. |
|
""" |
|
png_paths = [] |
|
for idx, fig in enumerate(self.all_figures, start=1): |
|
img_bytes = fig.to_image(format="png") |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: |
|
temp_file.write(img_bytes) |
|
temp_path = temp_file.name |
|
png_paths.append(temp_path) |
|
return png_paths |
|
|
|
def save_tables_to_excel(self): |
|
""" |
|
Guarda todas las tablas en un archivo Excel con múltiples hojas y retorna la ruta del archivo. |
|
""" |
|
tables = self.get_all_tables() |
|
excel_buffer = io.BytesIO() |
|
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer: |
|
for sheet_name, table in tables.items(): |
|
table.to_excel(writer, sheet_name=sheet_name, index=False) |
|
excel_buffer.seek(0) |
|
excel_bytes = excel_buffer.read() |
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as temp_file: |
|
temp_file.write(excel_bytes) |
|
temp_path = temp_file.name |
|
|
|
return temp_path |
|
|
|
def export_tables_to_word(self, tables_dict): |
|
""" |
|
Exporta las tablas proporcionadas a un documento de Word. |
|
""" |
|
if not tables_dict: |
|
return None |
|
|
|
doc = docx.Document() |
|
|
|
|
|
style = doc.styles['Normal'] |
|
font = style.font |
|
font.name = 'Times New Roman' |
|
font.size = Pt(12) |
|
|
|
|
|
titulo = doc.add_heading('Informe de Optimización de Producción de AIA', 0) |
|
titulo.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER |
|
|
|
doc.add_paragraph(f"Fecha: {datetime.now().strftime('%d/%m/%Y %H:%M')}").alignment = WD_PARAGRAPH_ALIGNMENT.CENTER |
|
|
|
doc.add_paragraph('\n') |
|
|
|
for sheet_name, table in tables_dict.items(): |
|
|
|
doc.add_heading(sheet_name, level=1) |
|
|
|
if table.empty: |
|
doc.add_paragraph("No hay datos disponibles para esta tabla.") |
|
continue |
|
|
|
|
|
table_doc = doc.add_table(rows=1, cols=len(table.columns)) |
|
table_doc.style = 'Light List Accent 1' |
|
|
|
|
|
hdr_cells = table_doc.rows[0].cells |
|
for idx, col_name in enumerate(table.columns): |
|
hdr_cells[idx].text = col_name |
|
|
|
|
|
for _, row in table.iterrows(): |
|
row_cells = table_doc.add_row().cells |
|
for idx, item in enumerate(row): |
|
row_cells[idx].text = str(item) |
|
|
|
doc.add_paragraph('\n') |
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp: |
|
doc.save(tmp.name) |
|
tmp_path = tmp.name |
|
|
|
return tmp_path |
|
|
|
|
|
|
|
def handle_load_design(n_factors, factor_inputs, y_name, load_example): |
|
""" |
|
Genera el diseño Box-Behnken según la configuración o carga un ejemplo. |
|
""" |
|
try: |
|
if load_example: |
|
|
|
if n_factors == 3: |
|
factor_names = ['Glucosa', 'Extracto_de_Levadura', 'Triptofano'] |
|
factor_levels = [ |
|
{'min': 1.0, 'max': 5.5, 'levels': [1.0, 3.5, 5.5]}, |
|
{'min': 0.03, 'max': 0.3, 'levels': [0.03, 0.2, 0.3]}, |
|
{'min': 0.4, 'max': 0.9, 'levels': [0.4, 0.65, 0.9]} |
|
] |
|
y_name = 'AIA_ppm' |
|
|
|
rsm = RSM_BoxBehnken(factor_names, factor_levels, y_name) |
|
design = rsm.generate_box_behnken_design() |
|
|
|
response_values = [166.594, 177.557, 127.261, 147.573, 188.883, 224.527, 190.238, 226.483, 195.550, 149.493, 187.683, 148.621, 278.951, 297.238, 280.896] |
|
rsm.set_response(response_values) |
|
return rsm, design |
|
elif n_factors == 4: |
|
factor_names = ['Glucosa', 'Extracto_de_Levadura', 'Triptofano', 'Tiempo'] |
|
factor_levels = [ |
|
{'min': 1.0, 'max': 5.5, 'levels': [1.0, 3.5, 5.5]}, |
|
{'min': 0.03, 'max': 0.3, 'levels': [0.03, 0.2, 0.3]}, |
|
{'min': 0.4, 'max': 0.9, 'levels': [0.4, 0.65, 0.9]}, |
|
{'min': 24, 'max': 72, 'levels': [24, 48, 72]} |
|
] |
|
y_name = 'AIA_ppm' |
|
|
|
rsm = RSM_BoxBehnken(factor_names, factor_levels, y_name) |
|
design = rsm.generate_box_behnken_design() |
|
|
|
response_values = [200 + np.random.normal(0, 10) for _ in range(len(design))] |
|
rsm.set_response(response_values) |
|
return rsm, design |
|
else: |
|
raise ValueError("Ejemplos solo disponibles para 3 y 4 factores.") |
|
else: |
|
|
|
factor_names = [] |
|
factor_levels = [] |
|
for i in range(n_factors): |
|
name = factor_inputs[i]['name'] |
|
min_val = factor_inputs[i]['min'] |
|
max_val = factor_inputs[i]['max'] |
|
factor_names.append(name) |
|
factor_levels.append({'min': min_val, 'max': max_val, 'levels': [min_val, (min_val + max_val) / 2, max_val]}) |
|
|
|
rsm = RSM_BoxBehnken(factor_names, factor_levels, y_name) |
|
design = rsm.generate_box_behnken_design() |
|
return rsm, design |
|
except Exception as e: |
|
print(f"Error al cargar el diseño: {str(e)}") |
|
return None, None |
|
|
|
def fit_and_optimize(rsm, response_values): |
|
""" |
|
Ajusta los modelos, realiza la optimización y genera todas las tablas y gráficos. |
|
""" |
|
try: |
|
rsm.set_response(response_values) |
|
model_completo, pareto_completo = rsm.fit_model() |
|
model_simplificado, pareto_simplificado = rsm.fit_simplified_model() |
|
optimization_table = rsm.optimize() |
|
equation = rsm.get_simplified_equation() |
|
prediction_table = rsm.generate_prediction_table() |
|
contribution_table = rsm.calculate_contribution_percentage() |
|
anova_table = rsm.calculate_detailed_anova() |
|
|
|
|
|
rsm.generate_all_plots() |
|
|
|
|
|
equation_formatted = equation.replace(" + ", "<br>+ ").replace("** 2", "^2").replace("*", " × ") |
|
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}" |
|
|
|
|
|
excel_path = rsm.save_tables_to_excel() |
|
|
|
|
|
zip_path = rsm.save_figures_to_zip() |
|
|
|
|
|
tables_dict = rsm.get_all_tables() |
|
|
|
return ( |
|
model_completo.summary().as_html(), |
|
pareto_completo, |
|
model_simplificado.summary().as_html(), |
|
pareto_simplificado, |
|
equation_formatted, |
|
optimization_table, |
|
prediction_table, |
|
contribution_table, |
|
anova_table, |
|
zip_path, |
|
excel_path, |
|
tables_dict |
|
) |
|
except Exception as e: |
|
print(f"Error en el análisis: {str(e)}") |
|
return [None]*12 |
|
|
|
def export_word(rsm_instance, tables_dict): |
|
""" |
|
Exporta las tablas a un documento de Word y retorna la ruta del archivo. |
|
""" |
|
try: |
|
word_path = rsm_instance.export_tables_to_word(tables_dict) |
|
if word_path and os.path.exists(word_path): |
|
return word_path |
|
return None |
|
except Exception as e: |
|
print(f"Error al exportar a Word: {str(e)}") |
|
return None |
|
|
|
|
|
|
|
def create_gradio_interface(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# 📊 Optimización de la Producción de AIA usando Diseño Box-Behnken") |
|
gr.Markdown(""" |
|
Esta aplicación te permite generar diseños Box-Behnken con un número variable de factores (mínimo 3, máximo 6), ajustar modelos de respuesta, realizar optimización y exportar los resultados a Excel y Word. |
|
""") |
|
|
|
with gr.Tab("🔧 Configuración"): |
|
with gr.Row(): |
|
n_factors_input = gr.Slider( |
|
minimum=3, |
|
maximum=6, |
|
step=1, |
|
value=3, |
|
label="Número de Factores", |
|
interactive=True |
|
) |
|
load_example_checkbox = gr.Checkbox( |
|
label="Cargar Ejemplo", |
|
value=False |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
factor_inputs = [] |
|
for i in range(6): |
|
with gr.Row(): |
|
factor_name = gr.Textbox(label=f"Factor {i+1} Nombre", placeholder=f"Nombre del Factor {i+1}", value=f"Factor_{i+1}") |
|
factor_min = gr.Number(label=f"Factor {i+1} Min", value=0.0) |
|
factor_max = gr.Number(label=f"Factor {i+1} Max", value=1.0) |
|
factor_inputs.append({'name': factor_name, 'min': factor_min, 'max': factor_max}) |
|
|
|
|
|
y_name_input = gr.Textbox(label="Variable Dependiente (Ej. AIA_ppm)", value="AIA_ppm") |
|
|
|
with gr.Row(): |
|
load_button = gr.Button("🔄 Generar Diseño") |
|
|
|
with gr.Tab("📊 Datos del Experimento"): |
|
gr.Markdown("### Diseño Box-Behnken") |
|
design_output = gr.Dataframe( |
|
headers=None, |
|
label="Diseño Generado (Completa la Columna de Respuestas)", |
|
interactive=True |
|
) |
|
submit_response_button = gr.Button("✅ Enviar Respuestas") |
|
|
|
with gr.Tab("📈 Análisis y Reporte"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("**Modelo Completo**") |
|
model_completo_output = gr.HTML() |
|
pareto_completo_output = gr.Plot() |
|
|
|
gr.Markdown("**Modelo Simplificado**") |
|
model_simplificado_output = gr.HTML() |
|
pareto_simplificado_output = gr.Plot() |
|
|
|
gr.Markdown("**Ecuación del Modelo Simplificado**") |
|
equation_output = gr.HTML() |
|
|
|
gr.Markdown("**Tabla de Optimización**") |
|
optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False) |
|
|
|
gr.Markdown("**Tabla de Predicciones**") |
|
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False) |
|
|
|
gr.Markdown("**Tabla de % de Contribución**") |
|
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False) |
|
|
|
gr.Markdown("**Tabla ANOVA Detallada**") |
|
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False) |
|
|
|
gr.Markdown("## Descargar Tablas") |
|
download_excel_button = gr.DownloadButton("💾 Descargar Tablas en Excel") |
|
download_word_button = gr.DownloadButton("📄 Descargar Tablas en Word") |
|
|
|
with gr.Column(): |
|
gr.Markdown("**Gráficos de Superficie de Respuesta**") |
|
rsm_plot_output = gr.Plot() |
|
plot_info = gr.Textbox(label="Información del Gráfico", value="Gráfico 1 de N", interactive=False) |
|
with gr.Row(): |
|
left_button = gr.Button("<") |
|
right_button = gr.Button(">") |
|
with gr.Row(): |
|
download_plot_button = gr.DownloadButton("💾 Descargar Gráfico Actual (PNG)") |
|
download_all_plots_button = gr.DownloadButton("💾 Descargar Todos los Gráficos (ZIP)") |
|
|
|
|
|
|
|
def handle_load_design_wrapper(n_factors, factor_inputs, y_name, load_example): |
|
""" |
|
Wrapper para manejar la carga del diseño Box-Behnken. |
|
""" |
|
|
|
factor_details = [] |
|
for i in range(6): |
|
name = factor_inputs[i]['name'].value |
|
min_val = factor_inputs[i]['min'].value |
|
max_val = factor_inputs[i]['max'].value |
|
factor_details.append({'name': name, 'min': min_val, 'max': max_val}) |
|
|
|
return handle_load_design(n_factors, factor_details, y_name, load_example) |
|
|
|
def handle_submit_response(rsm, design_df): |
|
""" |
|
Obtiene las respuestas ingresadas por el usuario y realiza el análisis. |
|
""" |
|
try: |
|
|
|
response_values = design_df[rsm.y_name].tolist() |
|
return fit_and_optimize(rsm, response_values) |
|
except Exception as e: |
|
print(f"Error al procesar las respuestas: {str(e)}") |
|
return [None]*12 |
|
|
|
|
|
load_button.click( |
|
fn=handle_load_design_wrapper, |
|
inputs=[n_factors_input, factor_inputs, y_name_input, load_example_checkbox], |
|
outputs=[gr.State(), design_output] |
|
) |
|
|
|
|
|
submit_response_button.click( |
|
fn=handle_submit_response, |
|
inputs=[gr.State(), design_output], |
|
outputs=[ |
|
model_completo_output, |
|
pareto_completo_output, |
|
model_simplificado_output, |
|
pareto_simplificado_output, |
|
equation_output, |
|
optimization_table_output, |
|
prediction_table_output, |
|
contribution_table_output, |
|
anova_table_output, |
|
download_all_plots_button, |
|
download_excel_button, |
|
gr.State() |
|
] |
|
) |
|
|
|
|
|
current_plot_state = gr.State(0) |
|
|
|
def get_current_plot(rsm, current_index): |
|
if not rsm.all_figures: |
|
return None, "No hay gráficos disponibles.", current_index |
|
selected_fig = rsm.all_figures[current_index] |
|
plot_info_text = f"Gráfico {current_index + 1} de {len(rsm.all_figures)}" |
|
return selected_fig, plot_info_text, current_index |
|
|
|
def navigate_plot(direction, current_index, rsm): |
|
if not rsm.all_figures: |
|
return None, "No hay gráficos disponibles.", current_index |
|
if direction == 'left': |
|
new_index = (current_index - 1) % len(rsm.all_figures) |
|
elif direction == 'right': |
|
new_index = (current_index + 1) % len(rsm.all_figures) |
|
else: |
|
new_index = current_index |
|
selected_fig = rsm.all_figures[new_index] |
|
plot_info_text = f"Gráfico {new_index + 1} de {len(rsm.all_figures)}" |
|
return selected_fig, plot_info_text, new_index |
|
|
|
|
|
left_button.click( |
|
fn=navigate_plot, |
|
inputs=[gr.ButtonValue(left_button), current_plot_state, gr.State()], |
|
outputs=[rsm_plot_output, plot_info, current_plot_state] |
|
) |
|
right_button.click( |
|
fn=navigate_plot, |
|
inputs=[gr.ButtonValue(right_button), current_plot_state, gr.State()], |
|
outputs=[rsm_plot_output, plot_info, current_plot_state] |
|
) |
|
|
|
|
|
download_plot_button.click( |
|
fn=lambda rsm, current_index: rsm.save_fig_to_bytes(rsm.all_figures[current_index]) if rsm and rsm.all_figures else None, |
|
inputs=[gr.State(), current_plot_state], |
|
outputs=download_plot_button |
|
) |
|
|
|
|
|
download_all_plots_button.click( |
|
fn=lambda rsm: rsm.save_figures_to_zip() if rsm else None, |
|
inputs=[gr.State()], |
|
outputs=download_all_plots_button |
|
) |
|
|
|
|
|
download_excel_button.click( |
|
fn=lambda excel_path: (excel_path, None) if excel_path else (None, None), |
|
inputs=[gr.State()], |
|
outputs=[download_excel_button, None] |
|
) |
|
|
|
|
|
download_word_button.click( |
|
fn=lambda rsm_instance, tables_dict: export_word(rsm_instance, tables_dict) if rsm_instance and tables_dict else None, |
|
inputs=[gr.State(), gr.State()], |
|
outputs=[download_word_button] |
|
) |
|
|
|
return demo |
|
|
|
|
|
|
|
def main(): |
|
interface = create_gradio_interface() |
|
interface.launch(share=True) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|