OptiTec_X2 / app.py
C2MV's picture
Update app.py
47688e3 verified
raw
history blame
36.6 kB
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
import plotly.graph_objects as go
from scipy.optimize import minimize
import plotly.express as px
from scipy.stats import t, f
import gradio as gr
import io
import zipfile
import tempfile
from datetime import datetime
class RSM_BoxBehnken:
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
"""
Inicializa la clase con los datos del dise帽o Box-Behnken.
Args:
data (pd.DataFrame): DataFrame con los datos del experimento.
x1_name (str): Nombre de la primera variable independiente.
x2_name (str): Nombre de la segunda variable independiente.
x3_name (str): Nombre de la tercera variable independiente.
y_name (str): Nombre de la variable dependiente.
x1_levels (list): Niveles de la primera variable independiente.
x2_levels (list): Niveles de la segunda variable independiente.
x3_levels (list): Niveles de la tercera variable independiente.
"""
self.data = data.copy()
self.model = None
self.model_simplified = None
self.optimized_results = None
self.optimal_levels = None
self.all_figures = [] # Lista para almacenar las figuras
self.x1_name = x1_name
self.x2_name = x2_name
self.x3_name = x3_name
self.y_name = y_name
# Niveles originales de las variables
self.x1_levels = x1_levels
self.x2_levels = x2_levels
self.x3_levels = x3_levels
def get_levels(self, variable_name):
"""
Obtiene los niveles para una variable espec铆fica.
Args:
variable_name (str): Nombre de la variable.
Returns:
list: Niveles de la variable.
"""
if variable_name == self.x1_name:
return self.x1_levels
elif variable_name == self.x2_name:
return self.x2_levels
elif variable_name == self.x3_name:
return self.x3_levels
else:
raise ValueError(f"Variable desconocida: {variable_name}")
def fit_model(self):
"""
Ajusta el modelo de segundo orden completo a los datos.
"""
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
self.model = smf.ols(formula, data=self.data).fit()
print("Modelo Completo:")
print(self.model.summary())
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
def fit_simplified_model(self):
"""
Ajusta el modelo de segundo orden a los datos, eliminando t茅rminos no significativos.
"""
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
self.model_simplified = smf.ols(formula, data=self.data).fit()
print("\nModelo Simplificado:")
print(self.model_simplified.summary())
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
def optimize(self, method='Nelder-Mead'):
"""
Encuentra los niveles 贸ptimos de los factores para maximizar la respuesta usando el modelo simplificado.
Args:
method (str): M茅todo de optimizaci贸n a utilizar (por defecto, 'Nelder-Mead').
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return
def objective_function(x):
return -self.model_simplified.predict(pd.DataFrame({
self.x1_name: [x[0]],
self.x2_name: [x[1]],
self.x3_name: [x[2]]
})).values[0]
bounds = [(-1, 1), (-1, 1), (-1, 1)]
x0 = [0, 0, 0]
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
self.optimal_levels = self.optimized_results.x
# Convertir niveles 贸ptimos de codificados a naturales
optimal_levels_natural = [
self.coded_to_natural(self.optimal_levels[0], self.x1_name),
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
]
# Crear la tabla de optimizaci贸n
optimization_table = pd.DataFrame({
'Variable': [self.x1_name, self.x2_name, self.x3_name],
'Nivel 脫ptimo (Natural)': optimal_levels_natural,
'Nivel 脫ptimo (Codificado)': self.optimal_levels
})
return optimization_table.round(3) # Redondear a 3 decimales
def plot_rsm_individual(self, fixed_variable, fixed_level):
"""
Genera un gr谩fico de superficie de respuesta (RSM) individual para una configuraci贸n espec铆fica.
Args:
fixed_variable (str): Nombre de la variable a mantener fija.
fixed_level (float): Nivel al que se fija la variable (en unidades naturales).
Returns:
go.Figure: Objeto de figura de Plotly.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return None
# Determinar las variables que var铆an y sus niveles naturales
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
# Establecer los niveles naturales para las variables que var铆an
x_natural_levels = self.get_levels(varying_variables[0])
y_natural_levels = self.get_levels(varying_variables[1])
# Crear una malla de puntos para las variables que var铆an (en unidades naturales)
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
# Convertir la malla de variables naturales a codificadas
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
# Crear un DataFrame para la predicci贸n con variables codificadas
prediction_data = pd.DataFrame({
varying_variables[0]: x_grid_coded.flatten(),
varying_variables[1]: y_grid_coded.flatten(),
})
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
# Calcular los valores predichos
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
# Filtrar por el nivel de la variable fija (en codificado)
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
# Filtrar por niveles v谩lidos en las variables que var铆an
valid_levels = [-1, 0, 1]
experiments_data = subset_data[
subset_data[varying_variables[0]].isin(valid_levels) &
subset_data[varying_variables[1]].isin(valid_levels)
]
# Convertir coordenadas de experimentos a naturales
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
# Crear el gr谩fico de superficie con variables naturales en los ejes y transparencia
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
# --- A帽adir cuadr铆cula a la superficie ---
# L铆neas en la direcci贸n x
for i in range(x_grid_natural.shape[0]):
fig.add_trace(go.Scatter3d(
x=x_grid_natural[i, :],
y=y_grid_natural[i, :],
z=z_pred[i, :],
mode='lines',
line=dict(color='gray', width=2),
showlegend=False,
hoverinfo='skip'
))
# L铆neas en la direcci贸n y
for j in range(x_grid_natural.shape[1]):
fig.add_trace(go.Scatter3d(
x=x_grid_natural[:, j],
y=y_grid_natural[:, j],
z=z_pred[:, j],
mode='lines',
line=dict(color='gray', width=2),
showlegend=False,
hoverinfo='skip'
))
# --- Fin de la adici贸n de la cuadr铆cula ---
# A帽adir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
colors = px.colors.qualitative.Safe
point_labels = [f"{row[self.y_name]:.3f}" for _, row in experiments_data.iterrows()]
fig.add_trace(go.Scatter3d(
x=experiments_x_natural,
y=experiments_y_natural,
z=experiments_data[self.y_name].round(3),
mode='markers+text',
marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
text=point_labels,
textposition='top center',
name='Experimentos'
))
# A帽adir etiquetas y t铆tulo con variables naturales
fig.update_layout(
scene=dict(
xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
zaxis_title=self.y_name,
),
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) (Modelo Simplificado)</sup>",
height=800,
width=1000,
showlegend=True
)
return fig
def get_units(self, variable_name):
"""
Define las unidades de las variables para etiquetas.
Puedes personalizar este m茅todo seg煤n tus necesidades.
Args:
variable_name (str): Nombre de la variable.
Returns:
str: Unidades de la variable.
"""
units = {
'Glucosa': 'g/L',
'Extracto_de_Levadura': 'g/L',
'Triptofano': 'g/L',
'AIA_ppm': 'ppm'
}
return units.get(variable_name, '')
def generate_all_plots(self):
"""
Genera todas las gr谩ficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
Almacena las figuras en self.all_figures.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return
self.all_figures = [] # Resetear la lista de figuras
# Niveles naturales para graficar
levels_to_plot_natural = {
self.x1_name: self.x1_levels,
self.x2_name: self.x2_levels,
self.x3_name: self.x3_levels
}
# Generar y almacenar gr谩ficos individuales
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
for level in levels_to_plot_natural[fixed_variable]:
fig = self.plot_rsm_individual(fixed_variable, level)
if fig is not None:
self.all_figures.append(fig)
def coded_to_natural(self, coded_value, variable_name):
"""Convierte un valor codificado a su valor natural."""
levels = self.get_levels(variable_name)
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
def natural_to_coded(self, natural_value, variable_name):
"""Convierte un valor natural a su valor codificado."""
levels = self.get_levels(variable_name)
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
def pareto_chart(self, model, title):
"""
Genera un diagrama de Pareto para los efectos estandarizados de un modelo,
incluyendo la l铆nea de significancia.
Args:
model: Modelo ajustado de statsmodels.
title (str): T铆tulo del gr谩fico.
"""
# Calcular los efectos estandarizados
tvalues = model.tvalues[1:] # Excluir la Intercept
abs_tvalues = np.abs(tvalues)
sorted_idx = np.argsort(abs_tvalues)[::-1]
sorted_tvalues = abs_tvalues[sorted_idx]
sorted_names = tvalues.index[sorted_idx]
# Calcular el valor cr铆tico de t para la l铆nea de significancia
alpha = 0.05 # Nivel de significancia
dof = model.df_resid # Grados de libertad residuales
t_critical = t.ppf(1 - alpha / 2, dof)
# Crear el diagrama de Pareto
fig = px.bar(
x=sorted_tvalues.round(3),
y=sorted_names,
orientation='h',
labels={'x': 'Efecto Estandarizado', 'y': 'T茅rmino'},
title=title
)
fig.update_yaxes(autorange="reversed")
# Agregar la l铆nea de significancia
fig.add_vline(x=t_critical, line_dash="dot",
annotation_text=f"t cr铆tico = {t_critical:.3f}",
annotation_position="bottom right")
return fig
def get_simplified_equation(self):
"""
Imprime la ecuaci贸n del modelo simplificado.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return None
coefficients = self.model_simplified.params
equation = f"{self.y_name} = {coefficients['Intercept']:.3f}"
for term, coef in coefficients.items():
if term != 'Intercept':
if term == f'{self.x1_name}':
equation += f" + {coef:.3f}*{self.x1_name}"
elif term == f'{self.x2_name}':
equation += f" + {coef:.3f}*{self.x2_name}"
elif term == f'{self.x3_name}':
equation += f" + {coef:.3f}*{self.x3_name}"
elif term == f'I({self.x1_name} ** 2)':
equation += f" + {coef:.3f}*{self.x1_name}^2"
elif term == f'I({self.x2_name} ** 2)':
equation += f" + {coef:.3f}*{self.x2_name}^2"
elif term == f'I({self.x3_name} ** 2)':
equation += f" + {coef:.3f}*{self.x3_name}^2"
return equation
def generate_prediction_table(self):
"""
Genera una tabla con los valores actuales, predichos y residuales.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return None
self.data['Predicho'] = self.model_simplified.predict(self.data)
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
return self.data[[self.y_name, 'Predicho', 'Residual']].round(3)
def calculate_contribution_percentage(self):
"""
Calcula el porcentaje de contribuci贸n de cada factor a la variabilidad de la respuesta (AIA).
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return None
# ANOVA del modelo simplificado
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
# Suma de cuadrados total
ss_total = anova_table['sum_sq'].sum()
# Crear tabla de contribuci贸n
contribution_table = pd.DataFrame({
'Factor': [],
'Suma de Cuadrados': [],
'% Contribuci贸n': []
})
# Calcular porcentaje de contribuci贸n para cada factor
for index, row in anova_table.iterrows():
if index != 'Residual':
factor_name = index
if factor_name == f'I({self.x1_name} ** 2)':
factor_name = f'{self.x1_name}^2'
elif factor_name == f'I({self.x2_name} ** 2)':
factor_name = f'{self.x2_name}^2'
elif factor_name == f'I({self.x3_name} ** 2)':
factor_name = f'{self.x3_name}^2'
ss_factor = row['sum_sq']
contribution_percentage = (ss_factor / ss_total) * 100
contribution_table = pd.concat([contribution_table, pd.DataFrame({
'Factor': [factor_name],
'Suma de Cuadrados': [ss_factor],
'% Contribuci贸n': [contribution_percentage]
})], ignore_index=True)
return contribution_table.round(3)
def calculate_detailed_anova(self):
"""
Calcula la tabla ANOVA detallada con la descomposici贸n del error residual.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return None
# --- ANOVA detallada ---
# 1. Ajustar un modelo solo con los t茅rminos de primer orden y cuadr谩ticos
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
# 2. ANOVA del modelo reducido (para obtener la suma de cuadrados de la regresi贸n)
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
# 3. Suma de cuadrados total
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
# 4. Grados de libertad totales
df_total = len(self.data) - 1
# 5. Suma de cuadrados de la regresi贸n
ss_regression = anova_reduced['sum_sq'][:-1].sum() # Sumar todo excepto 'Residual'
# 6. Grados de libertad de la regresi贸n
df_regression = len(anova_reduced) - 1
# 7. Suma de cuadrados del error residual
ss_residual = self.model_simplified.ssr
df_residual = self.model_simplified.df_resid
# 8. Suma de cuadrados del error puro (se calcula a partir de las r茅plicas)
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
if not replicas.empty:
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum() * replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
df_pure_error = len(replicas) - replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
else:
ss_pure_error = np.nan
df_pure_error = np.nan
# 9. Suma de cuadrados de la falta de ajuste
ss_lack_of_fit = ss_residual - ss_pure_error if not np.isnan(ss_pure_error) else np.nan
df_lack_of_fit = df_residual - df_pure_error if not np.isnan(df_pure_error) else np.nan
# 10. Cuadrados medios
ms_regression = ss_regression / df_regression
ms_residual = ss_residual / df_residual
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit if not np.isnan(ss_lack_of_fit) else np.nan
ms_pure_error = ss_pure_error / df_pure_error if not np.isnan(ss_pure_error) else np.nan
# 11. Estad铆stico F y valor p para la falta de ajuste
f_lack_of_fit = ms_lack_of_fit / ms_pure_error if not np.isnan(ms_lack_of_fit) else np.nan
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) if not np.isnan(f_lack_of_fit) else np.nan
# 12. Crear la tabla ANOVA detallada
detailed_anova_table = pd.DataFrame({
'Fuente de Variaci贸n': ['Regresi贸n', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
'Suma de Cuadrados': [ss_regression, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total],
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
'Cuadrado Medio': [ms_regression, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan],
'F': [np.nan, np.nan, f_lack_of_fit, np.nan, np.nan],
'Valor p': [np.nan, np.nan, p_lack_of_fit, np.nan, np.nan]
})
# Calcular la suma de cuadrados y grados de libertad para la curvatura
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
df_curvature = 3
# A帽adir la fila de curvatura a la tabla ANOVA
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', ss_curvature, df_curvature, ss_curvature / df_curvature, np.nan, np.nan]
# Reorganizar las filas para que la curvatura aparezca despu茅s de la regresi贸n
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
# Resetear el 铆ndice para que sea consecutivo
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
return detailed_anova_table.round(3)
def get_all_tables(self):
"""
Obtiene todas las tablas generadas para ser exportadas a Excel.
"""
prediction_table = self.generate_prediction_table()
contribution_table = self.calculate_contribution_percentage()
detailed_anova_table = self.calculate_detailed_anova()
return {
'Predicciones': prediction_table,
'% Contribuci贸n': contribution_table,
'ANOVA Detallada': detailed_anova_table
}
def save_figures_to_zip(self):
"""
Guarda todas las figuras almacenadas en self.all_figures a un archivo ZIP en memoria.
Returns:
bytes: Bytes del archivo ZIP.
"""
if not self.all_figures:
return None
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
for idx, fig in enumerate(self.all_figures, start=1):
img_bytes = fig.to_image(format="png")
zip_file.writestr(f'Grafico_{idx}.png', img_bytes)
zip_buffer.seek(0)
return zip_buffer.getvalue()
def save_fig_to_bytes(self, fig):
"""
Convierte una figura Plotly a bytes en formato PNG.
Args:
fig (go.Figure): Figura de Plotly.
Returns:
bytes: Bytes de la imagen PNG.
"""
return fig.to_image(format="png")
# --- Funciones para la interfaz de Gradio ---
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
"""
Carga los datos del dise帽o Box-Behnken desde cajas de texto y crea la instancia de RSM_BoxBehnken.
Args:
x1_name (str): Nombre de la primera variable independiente.
x2_name (str): Nombre de la segunda variable independiente.
x3_name (str): Nombre de la tercera variable independiente.
y_name (str): Nombre de la variable dependiente.
x1_levels_str (str): Niveles de la primera variable, separados por comas.
x2_levels_str (str): Niveles de la segunda variable, separados por comas.
x3_levels_str (str): Niveles de la tercera variable, separados por comas.
data_str (str): Datos del experimento en formato CSV, separados por comas.
Returns:
tuple: (pd.DataFrame, str, str, str, str, list, list, list, gr.update)
"""
try:
# Convertir los niveles a listas de n煤meros
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
# Crear DataFrame a partir de la cadena de datos
data_list = [row.split(',') for row in data_str.strip().split('\n')]
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
data = pd.DataFrame(data_list, columns=column_names)
data = data.apply(pd.to_numeric, errors='coerce') # Convertir a num茅rico
# Validar que el DataFrame tenga las columnas correctas
if not all(col in data.columns for col in column_names):
raise ValueError("El formato de los datos no es correcto.")
# Crear la instancia de RSM_BoxBehnken
global rsm
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
return data.round(3), x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels, gr.update(visible=True)
except Exception as e:
# Mostrar mensaje de error
return None, "", "", "", "", [], [], [], gr.update(visible=False)
def fit_and_optimize_model():
if 'rsm' not in globals():
return [None]*10
# Ajustar modelos y optimizar
model_completo, pareto_completo = rsm.fit_model()
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
optimization_table = rsm.optimize()
equation = rsm.get_simplified_equation()
prediction_table = rsm.generate_prediction_table()
contribution_table = rsm.calculate_contribution_percentage()
anova_table = rsm.calculate_detailed_anova()
# Generar todas las figuras y almacenarlas
rsm.generate_all_plots()
# Formatear la ecuaci贸n para que se vea mejor en Markdown
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " 脳 ")
equation_formatted = f"### Ecuaci贸n del Modelo Simplificado:<br>{equation_formatted}"
return (
model_completo.summary().as_html(),
pareto_completo,
model_simplificado.summary().as_html(),
pareto_simplificado,
equation_formatted,
optimization_table,
prediction_table,
contribution_table,
anova_table,
rsm.all_figures # Devuelve todas las figuras generadas
)
def show_plot(all_figures, current_index):
if not all_figures:
return None, "No hay gr谩ficos disponibles.", current_index
selected_fig = all_figures[current_index]
plot_info_text = f"Gr谩fico {current_index + 1} de {len(all_figures)}"
return selected_fig, plot_info_text, current_index
def navigate_plot(direction, current_index, all_figures):
"""
Navega entre los gr谩ficos.
Args:
direction (str): 'left' o 'right'.
current_index (int): 脥ndice actual.
all_figures (list): Lista de todas las figuras.
Returns:
tuple: (gr.Figure, str, int)
"""
if not all_figures:
return None, "No hay gr谩ficos disponibles.", current_index
if direction == 'left':
new_index = (current_index - 1) % len(all_figures)
elif direction == 'right':
new_index = (current_index + 1) % len(all_figures)
else:
new_index = current_index
selected_fig = all_figures[new_index]
plot_info_text = f"Gr谩fico {new_index + 1} de {len(all_figures)}"
return selected_fig, plot_info_text, new_index
def download_current_plot(all_figures, current_index):
"""
Descarga la figura actual como PNG.
Args:
all_figures (list): Lista de figuras.
current_index (int): 脥ndice de la figura actual.
Returns:
str: Ruta del archivo PNG temporal.
"""
if not all_figures:
return "grafico_actual.png" # Ruta predeterminada en caso de error
fig = all_figures[current_index]
img_bytes = rsm.save_fig_to_bytes(fig)
# Crear un archivo temporal
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
temp_file.write(img_bytes)
temp_file.close()
return temp_file.name
def download_all_plots_zip(all_figures):
"""
Descarga todas las figuras en un archivo ZIP.
Args:
all_figures (list): Lista de figuras.
Returns:
str: Ruta del archivo ZIP temporal.
"""
zip_bytes = rsm.save_figures_to_zip()
if zip_bytes:
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
zip_filename = f"Graficos_RSM_{timestamp}.zip"
# Crear un archivo temporal para el ZIP
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
temp_file.write(zip_bytes)
temp_file.close()
return temp_file.name
return "Graficos_RSM.zip" # Ruta predeterminada en caso de error
def download_all_tables_excel():
"""
Descarga todas las tablas en un archivo Excel con m煤ltiples hojas.
Returns:
str: Ruta del archivo Excel temporal.
"""
if 'rsm' not in globals():
return "Tablas_RSM.xlsx"
tables = rsm.get_all_tables()
excel_buffer = io.BytesIO()
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
for sheet_name, table in tables.items():
table.to_excel(writer, sheet_name=sheet_name, index=False)
excel_buffer.seek(0)
# Crear un archivo temporal para el Excel
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx")
temp_file.write(excel_buffer.read())
temp_file.close()
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
excel_filename = f"Tablas_RSM_{timestamp}.xlsx"
return temp_file.name
# --- Crear la interfaz de Gradio ---
with gr.Blocks() as demo:
gr.Markdown("# Optimizaci贸n de la producci贸n de AIA usando RSM Box-Behnken")
with gr.Row():
with gr.Column():
gr.Markdown("## Configuraci贸n del Dise帽o")
x1_name_input = gr.Textbox(label="Nombre de la Variable X1 (ej. Glucosa)", value="Glucosa")
x2_name_input = gr.Textbox(label="Nombre de la Variable X2 (ej. Extracto de Levadura)", value="Extracto_de_Levadura")
x3_name_input = gr.Textbox(label="Nombre de la Variable X3 (ej. Tript贸fano)", value="Triptofano")
y_name_input = gr.Textbox(label="Nombre de la Variable Dependiente (ej. AIA (ppm))", value="AIA_ppm")
x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="1, 3.5, 5.5")
x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0.03, 0.2, 0.3")
x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.4, 0.65, 0.9")
data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=10, value="""1,-1,-1,0,166.594
2,1,-1,0,177.557
3,-1,1,0,127.261
4,1,1,0,147.573
5,-1,0,-1,188.883
6,1,0,-1,224.527
7,-1,0,1,190.238
8,1,0,1,226.483
9,0,-1,-1,195.550
10,0,1,-1,149.493
11,0,-1,1,187.683
12,0,1,1,148.621
13,0,0,0,278.951
14,0,0,0,297.238
15,0,0,0,280.896""")
load_button = gr.Button("Cargar Datos")
with gr.Column():
gr.Markdown("## Datos Cargados")
data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
# Secci贸n de an谩lisis visible solo despu茅s de cargar los datos
with gr.Row(visible=False) as analysis_row:
with gr.Column():
fit_button = gr.Button("Ajustar Modelo y Optimizar")
gr.Markdown("**Modelo Completo**")
model_completo_output = gr.HTML()
pareto_completo_output = gr.Plot()
gr.Markdown("**Modelo Simplificado**")
model_simplificado_output = gr.HTML()
pareto_simplificado_output = gr.Plot()
gr.Markdown("**Ecuaci贸n del Modelo Simplificado**")
equation_output = gr.HTML()
optimization_table_output = gr.Dataframe(label="Tabla de Optimizaci贸n", interactive=False)
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribuci贸n", interactive=False)
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
gr.Markdown("## Descargar Todas las Tablas")
download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
with gr.Column():
gr.Markdown("## Generar Gr谩ficos de Superficie de Respuesta")
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
plot_button = gr.Button("Generar Gr谩ficos")
with gr.Row():
left_button = gr.Button("<")
right_button = gr.Button(">")
rsm_plot_output = gr.Plot()
plot_info = gr.Textbox(label="Informaci贸n del Gr谩fico", value="Gr谩fico 1 de 9", interactive=False)
with gr.Row():
download_plot_button = gr.DownloadButton("Descargar Gr谩fico Actual (PNG)")
download_all_plots_button = gr.DownloadButton("Descargar Todos los Gr谩ficos (ZIP)")
current_index_state = gr.State(0) # Estado para el 铆ndice actual
# Cargar datos
load_button.click(
load_data,
inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
)
# Ajustar modelo y optimizar
fit_button.click(
fit_and_optimize_model,
inputs=[],
outputs=[
model_completo_output,
pareto_completo_output,
model_simplificado_output,
pareto_simplificado_output,
equation_output,
optimization_table_output,
prediction_table_output,
contribution_table_output,
anova_table_output,
gr.State(), # all_figures
gr.State() # current_index
]
)
# Generar y mostrar el primer gr谩fico
plot_button.click(
lambda all_figures: show_plot(all_figures, 0),
inputs=[gr.State()],
outputs=[rsm_plot_output, plot_info, current_index_state]
)
# Navegaci贸n de gr谩ficos
left_button.click(
lambda current_index, all_figures: navigate_plot('left', current_index, all_figures),
inputs=[current_index_state, gr.State()],
outputs=[rsm_plot_output, plot_info, current_index_state]
)
right_button.click(
lambda current_index, all_figures: navigate_plot('right', current_index, all_figures),
inputs=[current_index_state, gr.State()],
outputs=[rsm_plot_output, plot_info, current_index_state]
)
# Descargar gr谩fico actual
download_plot_button.click(
download_current_plot,
inputs=[gr.State(), current_index_state],
outputs=[download_plot_button]
)
# Descargar todos los gr谩ficos en ZIP
download_all_plots_button.click(
download_all_plots_zip,
inputs=[gr.State()],
outputs=[download_all_plots_button]
)
# Descargar todas las tablas en Excel
download_excel_button.click(
download_all_tables_excel,
inputs=[],
outputs=[download_excel_button]
)
# Ejemplo de uso
gr.Markdown("## Ejemplo de uso")
gr.Markdown("""
1. Introduce los nombres de las variables y sus niveles en las cajas de texto correspondientes.
2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.
3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.
4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles 贸ptimos de los factores.
5. Selecciona una variable fija y su nivel en los controles deslizantes.
6. Haz clic en 'Generar Gr谩ficos' para generar los gr谩ficos de superficie de respuesta.
7. Navega entre los gr谩ficos usando los botones '<' y '>'.
8. Descarga el gr谩fico actual en PNG o descarga todos los gr谩ficos en un ZIP.
9. Descarga todas las tablas en un archivo Excel con el bot贸n correspondiente.
""")
demo.launch()