Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import librosa | |
from pathlib import Path | |
import tempfile, torchaudio | |
from transformers import pipeline | |
# Load the MARS5 model | |
mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True) | |
asr_model = pipeline( | |
"automatic-speech-recognition", | |
model="openai/whisper-tiny", | |
chunk_length_s=30, | |
device=torch.device("cuda:0"), | |
) | |
def transcribe_file(f: str) -> str: | |
predictions = asr_model(f, return_timestamps=True)["chunks"] | |
print(f">>>>>. predictions: {predictions}") | |
return " ".join([prediction["text"] for prediction in predictions]) | |
# Function to process the text and audio input and generate the synthesized output | |
def synthesize(text, audio_file, transcript, kwargs_dict): | |
print(f">>>>>>> Kwargs dict: {kwargs_dict}") | |
if not transcript: | |
transcript = transcribe_file(audio_file) | |
# Load the reference audio | |
wav, sr = librosa.load(audio_file, sr=mars5.sr, mono=True) | |
wav = torch.from_numpy(wav) | |
# Define the configuration for the TTS model | |
cfg = config_class(**kwargs_dict) | |
# Generate the synthesized audio | |
ar_codes, wav_out = mars5.tts(text, wav, transcript.strip(), cfg=cfg) | |
# Save the synthesized audio to a temporary file | |
output_path = Path(tempfile.mktemp(suffix=".wav")) | |
torchaudio.save(output_path, wav_out.unsqueeze(0), mars5.sr) | |
return str(output_path) | |
defaults = { | |
'temperature': 0.8, | |
'top_k': -1, | |
'top_p': 0.2, | |
'typical_p': 1.0, | |
'freq_penalty': 2.6, | |
'presence_penalty': 0.4, | |
'rep_penalty_window': 100, | |
'max_prompt_phones': 360, | |
'deep_clone': True, | |
'nar_guidance_w': 3 | |
} | |
with gr.Blocks() as demo: | |
link = "https://github.com/Camb-ai/MARS5-TTS" | |
gr.Markdown("## MARS5 TTS Demo\nEnter text and upload an audio file to clone the voice and generate synthesized speech using **[MARS5-TTS]({link})**") | |
text = gr.Textbox(label="Text to synthesize") | |
audio_file = gr.Audio(label="Audio file to clone from", type="filepath") | |
generate_btn = gr.Button("Generate Synthesized Audio") | |
with gr.Accordion("Advanced Settings", open=False): | |
gr.Markdown("additional inference settings\nWARNING: changing these incorrectly may degrade quality.") | |
prompt_text = gr.Textbox(label="Transcript of voice reference") | |
temperature = gr.Slider(minimum=0.01, maximum=3, step=0.01, label="temperature", value=defaults['temperature']) | |
top_k = gr.Slider(minimum=-1, maximum=2000, step=1, label="top_k", value=defaults['top_k']) | |
top_p = gr.Slider(minimum=0.01, maximum=1.0, step=0.01, label="top_p", value=defaults['top_p']) | |
typical_p = gr.Slider(minimum=0.01, maximum=1, step=0.01, label="typical_p", value=defaults['typical_p']) | |
freq_penalty = gr.Slider(minimum=0, maximum=5, step=0.05, label="freq_penalty", value=defaults['freq_penalty']) | |
presence_penalty = gr.Slider(minimum=0, maximum=5, step=0.05, label="presence_penalty", value=defaults['presence_penalty']) | |
rep_penalty_window = gr.Slider(minimum=1, maximum=500, step=1, label="rep_penalty_window", value=defaults['rep_penalty_window']) | |
nar_guidance_w = gr.Slider(minimum=1, maximum=8, step=0.1, label="nar_guidance_w", value=defaults['nar_guidance_w']) | |
deep_clone = gr.Checkbox(value=defaults['deep_clone'], label='deep_clone') | |
output = gr.Audio(label="Synthesized Audio", type="filepath") | |
def on_click( | |
text, | |
audio_file, | |
prompt_text, | |
temperature, | |
top_k, | |
top_p, | |
typical_p, | |
freq_penalty, | |
presence_penalty, | |
rep_penalty_window, | |
nar_guidance_w, | |
deep_clone | |
): | |
print(f">>>> transcript: {prompt_text}; audio_file = {audio_file}") | |
of = synthesize( | |
text, | |
audio_file, | |
prompt_text, | |
{ | |
'temperature': temperature, | |
'top_k': top_k, | |
'top_p': top_p, | |
'typical_p': typical_p, | |
'freq_penalty': freq_penalty, | |
'presence_penalty': presence_penalty, | |
'rep_penalty_window': rep_penalty_window, | |
'nar_guidance_w': nar_guidance_w, | |
'deep_clone': deep_clone | |
} | |
) | |
print(f">>>> output file: {of}") | |
return of | |
generate_btn.click( | |
on_click, | |
inputs=[ | |
text, | |
audio_file, | |
prompt_text, | |
temperature, | |
top_k, | |
top_p, | |
typical_p, | |
freq_penalty, | |
presence_penalty, | |
rep_penalty_window, | |
nar_guidance_w, | |
deep_clone | |
], | |
outputs=[output] | |
) | |
# Add examples | |
defaults = [0.8, -1, 0.2, 1.0, 2.6, 0.4, 100, 3, True] | |
examples = [ | |
["Can you please go there and figure it out?", "female_speaker_1.flac", "People look, but no one ever finds it.", *defaults], | |
["Hey, do you need my help?", "male_speaker_1.flac", "Ask her to bring these things with her from the store.", *defaults] | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=[text, audio_file, prompt_text, temperature, top_k, top_p, typical_p, freq_penalty, presence_penalty, rep_penalty_window, nar_guidance_w, deep_clone], | |
outputs=[output], | |
cache_examples=False, | |
fn=on_click | |
) | |
demo.launch(share=False) |