CCockrum commited on
Commit
9755c24
Β·
verified Β·
1 Parent(s): c69a8a8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +460 -0
app.py ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import torch
4
+ import json
5
+ import matplotlib.pyplot as plt
6
+ import plotly.graph_objects as go
7
+ import plotly.express as px
8
+ from typing import Dict, List, Tuple, Any
9
+ import logging
10
+
11
+ # Import your quantum AI agent (assuming it's in quantum_agent.py)
12
+ from quantum_agent import QuantumAIAgent, QuantumState, QuantumCircuit
13
+
14
+ # Configure logging
15
+ logging.basicConfig(level=logging.INFO)
16
+ logger = logging.getLogger(__name__)
17
+
18
+ class QuantumAIInterface:
19
+ """Gradio interface for the Quantum AI Agent."""
20
+
21
+ def __init__(self):
22
+ self.agent = QuantumAIAgent()
23
+ logger.info("Quantum AI Interface initialized")
24
+
25
+ def optimize_vqe(self, num_qubits: int, optimization_steps: int) -> Tuple[str, str]:
26
+ """VQE optimization interface."""
27
+ try:
28
+ # Create a random Hamiltonian
29
+ dim = 2**num_qubits
30
+ hamiltonian = np.random.random((dim, dim))
31
+ hamiltonian = hamiltonian + hamiltonian.T # Make Hermitian
32
+
33
+ # Initialize random parameters
34
+ initial_params = np.random.random(num_qubits * 2)
35
+
36
+ # Run optimization
37
+ result = self.agent.optimize_quantum_algorithm("VQE", hamiltonian, initial_params)
38
+
39
+ # Format results
40
+ result_text = f"""
41
+ VQE Optimization Results:
42
+ ========================
43
+ Ground State Energy: {result['ground_state_energy']:.6f}
44
+ Optimization Success: {result['optimization_success']}
45
+ Number of Iterations: {result['iterations']}
46
+ Optimal Parameters: {np.array2string(result['optimal_parameters'], precision=4)}
47
+ Circuit Depth: {result['optimal_circuit'].depth}
48
+ """
49
+
50
+ # Create visualization
51
+ fig = plt.figure(figsize=(10, 6))
52
+ plt.subplot(1, 2, 1)
53
+ plt.plot(result['optimal_parameters'], 'bo-')
54
+ plt.title('Optimal Parameters')
55
+ plt.xlabel('Parameter Index')
56
+ plt.ylabel('Value')
57
+
58
+ plt.subplot(1, 2, 2)
59
+ plt.bar(range(len(result['optimal_parameters'])), result['optimal_parameters'])
60
+ plt.title('Parameter Distribution')
61
+ plt.xlabel('Parameter Index')
62
+ plt.ylabel('Value')
63
+
64
+ plt.tight_layout()
65
+ plt.savefig('vqe_results.png', dpi=150, bbox_inches='tight')
66
+ plt.close()
67
+
68
+ return result_text, 'vqe_results.png'
69
+
70
+ except Exception as e:
71
+ error_msg = f"Error in VQE optimization: {str(e)}"
72
+ logger.error(error_msg)
73
+ return error_msg, None
74
+
75
+ def optimize_qaoa(self, num_qubits: int, num_layers: int) -> Tuple[str, str]:
76
+ """QAOA optimization interface."""
77
+ try:
78
+ # Create problem Hamiltonian
79
+ dim = 2**num_qubits
80
+ hamiltonian = np.random.random((dim, dim))
81
+ hamiltonian = hamiltonian + hamiltonian.T
82
+
83
+ # Initialize QAOA parameters
84
+ initial_params = np.random.random(2 * num_layers) # beta and gamma
85
+
86
+ # Run optimization
87
+ result = self.agent.optimize_quantum_algorithm("QAOA", hamiltonian, initial_params)
88
+
89
+ result_text = f"""
90
+ QAOA Optimization Results:
91
+ =========================
92
+ Optimal Value: {result['optimal_value']:.6f}
93
+ Optimization Success: {result['optimization_success']}
94
+ Number of Iterations: {result['iterations']}
95
+ Optimal Beta: {np.array2string(result['optimal_beta'], precision=4)}
96
+ Optimal Gamma: {np.array2string(result['optimal_gamma'], precision=4)}
97
+ """
98
+
99
+ # Create visualization
100
+ fig = plt.figure(figsize=(12, 5))
101
+
102
+ plt.subplot(1, 3, 1)
103
+ plt.plot(result['optimal_beta'], 'ro-', label='Beta')
104
+ plt.plot(result['optimal_gamma'], 'bo-', label='Gamma')
105
+ plt.title('QAOA Parameters')
106
+ plt.xlabel('Layer')
107
+ plt.ylabel('Value')
108
+ plt.legend()
109
+
110
+ plt.subplot(1, 3, 2)
111
+ plt.bar(range(len(result['optimal_beta'])), result['optimal_beta'], alpha=0.7, label='Beta')
112
+ plt.title('Beta Parameters')
113
+ plt.xlabel('Layer')
114
+ plt.ylabel('Value')
115
+
116
+ plt.subplot(1, 3, 3)
117
+ plt.bar(range(len(result['optimal_gamma'])), result['optimal_gamma'], alpha=0.7, label='Gamma', color='orange')
118
+ plt.title('Gamma Parameters')
119
+ plt.xlabel('Layer')
120
+ plt.ylabel('Value')
121
+
122
+ plt.tight_layout()
123
+ plt.savefig('qaoa_results.png', dpi=150, bbox_inches='tight')
124
+ plt.close()
125
+
126
+ return result_text, 'qaoa_results.png'
127
+
128
+ except Exception as e:
129
+ error_msg = f"Error in QAOA optimization: {str(e)}"
130
+ logger.error(error_msg)
131
+ return error_msg, None
132
+
133
+ def demonstrate_error_mitigation(self, num_qubits: int, noise_level: float) -> Tuple[str, str]:
134
+ """Error mitigation demonstration."""
135
+ try:
136
+ # Create a quantum state
137
+ dim = 2**num_qubits
138
+ amplitudes = np.random.random(dim) + 1j * np.random.random(dim)
139
+ amplitudes = amplitudes / np.linalg.norm(amplitudes)
140
+
141
+ quantum_state = QuantumState(
142
+ amplitudes=amplitudes,
143
+ num_qubits=num_qubits,
144
+ fidelity=1.0 - noise_level
145
+ )
146
+
147
+ # Apply error mitigation
148
+ noise_model = {"noise_factor": noise_level}
149
+ corrected_state = self.agent.mitigate_errors(quantum_state, noise_model)
150
+
151
+ result_text = f"""
152
+ Error Mitigation Results:
153
+ ========================
154
+ Number of Qubits: {num_qubits}
155
+ Original Fidelity: {quantum_state.fidelity:.4f}
156
+ Corrected Fidelity: {corrected_state.fidelity:.4f}
157
+ Fidelity Improvement: {corrected_state.fidelity - quantum_state.fidelity:.4f}
158
+ Noise Level: {noise_level:.4f}
159
+ """
160
+
161
+ # Create visualization
162
+ fig = plt.figure(figsize=(12, 5))
163
+
164
+ plt.subplot(1, 3, 1)
165
+ plt.bar(['Original', 'Corrected'], [quantum_state.fidelity, corrected_state.fidelity])
166
+ plt.title('Fidelity Comparison')
167
+ plt.ylabel('Fidelity')
168
+ plt.ylim(0, 1)
169
+
170
+ plt.subplot(1, 3, 2)
171
+ plt.plot(np.abs(quantum_state.amplitudes), 'b-', label='Original', alpha=0.7)
172
+ plt.plot(np.abs(corrected_state.amplitudes), 'r-', label='Corrected', alpha=0.7)
173
+ plt.title('State Amplitudes (Magnitude)')
174
+ plt.xlabel('Basis State')
175
+ plt.ylabel('Amplitude')
176
+ plt.legend()
177
+
178
+ plt.subplot(1, 3, 3)
179
+ improvement = corrected_state.fidelity - quantum_state.fidelity
180
+ plt.bar(['Fidelity Improvement'], [improvement], color='green' if improvement > 0 else 'red')
181
+ plt.title('Improvement')
182
+ plt.ylabel('Fidelity Change')
183
+
184
+ plt.tight_layout()
185
+ plt.savefig('error_mitigation_results.png', dpi=150, bbox_inches='tight')
186
+ plt.close()
187
+
188
+ return result_text, 'error_mitigation_results.png'
189
+
190
+ except Exception as e:
191
+ error_msg = f"Error in error mitigation: {str(e)}"
192
+ logger.error(error_msg)
193
+ return error_msg, None
194
+
195
+ def optimize_resources(self, num_circuits: int, max_qubits: int, available_qubits: int) -> Tuple[str, str]:
196
+ """Resource optimization demonstration."""
197
+ try:
198
+ # Generate random circuits
199
+ circuits = []
200
+ for i in range(num_circuits):
201
+ num_qubits = np.random.randint(2, min(max_qubits, available_qubits) + 1)
202
+ depth = np.random.randint(5, 50)
203
+ circuits.append(QuantumCircuit([], np.array([]), num_qubits, depth))
204
+
205
+ # Optimize resources
206
+ allocation_plan = self.agent.optimize_resources(circuits, available_qubits)
207
+
208
+ result_text = f"""
209
+ Resource Optimization Results:
210
+ =============================
211
+ Number of Circuits: {num_circuits}
212
+ Available Qubits: {available_qubits}
213
+ Resource Utilization: {allocation_plan['resource_utilization']:.2%}
214
+ Estimated Runtime: {allocation_plan['estimated_runtime']:.2f} time units
215
+ Scheduled Circuits: {len(allocation_plan['schedule'])}
216
+ """
217
+
218
+ if allocation_plan['schedule']:
219
+ result_text += "\nSchedule Details:\n"
220
+ for i, task in enumerate(allocation_plan['schedule'][:5]): # Show first 5
221
+ result_text += f"Circuit {task['circuit_id']}: {task['qubits_allocated']} qubits, starts at {task['start_time']:.2f}\n"
222
+
223
+ # Create visualization
224
+ fig = plt.figure(figsize=(12, 8))
225
+
226
+ # Resource utilization
227
+ plt.subplot(2, 2, 1)
228
+ plt.pie([allocation_plan['resource_utilization'], 1 - allocation_plan['resource_utilization']],
229
+ labels=['Used', 'Available'], autopct='%1.1f%%')
230
+ plt.title('Resource Utilization')
231
+
232
+ # Circuit requirements
233
+ plt.subplot(2, 2, 2)
234
+ qubit_reqs = [c.num_qubits for c in circuits]
235
+ plt.hist(qubit_reqs, bins=min(10, max_qubits), alpha=0.7)
236
+ plt.title('Circuit Qubit Requirements')
237
+ plt.xlabel('Number of Qubits')
238
+ plt.ylabel('Frequency')
239
+
240
+ # Circuit depths
241
+ plt.subplot(2, 2, 3)
242
+ depths = [c.depth for c in circuits]
243
+ plt.hist(depths, bins=10, alpha=0.7, color='orange')
244
+ plt.title('Circuit Depths')
245
+ plt.xlabel('Depth')
246
+ plt.ylabel('Frequency')
247
+
248
+ # Schedule timeline
249
+ plt.subplot(2, 2, 4)
250
+ if allocation_plan['schedule']:
251
+ start_times = [task['start_time'] for task in allocation_plan['schedule']]
252
+ durations = [task['estimated_duration'] for task in allocation_plan['schedule']]
253
+ plt.barh(range(len(start_times)), durations, left=start_times, alpha=0.7)
254
+ plt.title('Schedule Timeline')
255
+ plt.xlabel('Time')
256
+ plt.ylabel('Circuit')
257
+
258
+ plt.tight_layout()
259
+ plt.savefig('resource_optimization_results.png', dpi=150, bbox_inches='tight')
260
+ plt.close()
261
+
262
+ return result_text, 'resource_optimization_results.png'
263
+
264
+ except Exception as e:
265
+ error_msg = f"Error in resource optimization: {str(e)}"
266
+ logger.error(error_msg)
267
+ return error_msg, None
268
+
269
+ def hybrid_processing_demo(self, data_size: int, quantum_component: str) -> Tuple[str, str]:
270
+ """Hybrid processing demonstration."""
271
+ try:
272
+ # Generate classical data
273
+ classical_data = np.random.random(data_size)
274
+
275
+ # Run hybrid processing
276
+ result = self.agent.hybrid_processing(classical_data, quantum_component)
277
+
278
+ result_text = f"""
279
+ Hybrid Processing Results:
280
+ =========================
281
+ Input Data Size: {data_size}
282
+ Quantum Component: {quantum_component}
283
+ Output Statistics:
284
+ Mean: {result['final_result']['statistics']['mean']:.6f}
285
+ Std: {result['final_result']['statistics']['std']:.6f}
286
+ Min: {result['final_result']['statistics']['min']:.6f}
287
+ Max: {result['final_result']['statistics']['max']:.6f}
288
+ Confidence: {result['final_result']['confidence']:.4f}
289
+ """
290
+
291
+ # Create visualization
292
+ fig = plt.figure(figsize=(15, 5))
293
+
294
+ plt.subplot(1, 3, 1)
295
+ plt.plot(classical_data, 'b-', alpha=0.7)
296
+ plt.title('Original Classical Data')
297
+ plt.xlabel('Index')
298
+ plt.ylabel('Value')
299
+
300
+ plt.subplot(1, 3, 2)
301
+ plt.plot(result['preprocessed_data'], 'g-', alpha=0.7)
302
+ plt.title('Preprocessed Data')
303
+ plt.xlabel('Index')
304
+ plt.ylabel('Value')
305
+
306
+ plt.subplot(1, 3, 3)
307
+ plt.plot(result['quantum_result'].flatten(), 'r-', alpha=0.7)
308
+ plt.title(f'Quantum Result ({quantum_component})')
309
+ plt.xlabel('Index')
310
+ plt.ylabel('Value')
311
+
312
+ plt.tight_layout()
313
+ plt.savefig('hybrid_processing_results.png', dpi=150, bbox_inches='tight')
314
+ plt.close()
315
+
316
+ return result_text, 'hybrid_processing_results.png'
317
+
318
+ except Exception as e:
319
+ error_msg = f"Error in hybrid processing: {str(e)}"
320
+ logger.error(error_msg)
321
+ return error_msg, None
322
+
323
+ def create_interface():
324
+ """Create the Gradio interface."""
325
+ interface = QuantumAIInterface()
326
+
327
+ with gr.Blocks(title="Quantum AI Agent", theme=gr.themes.Soft()) as demo:
328
+ gr.Markdown("""
329
+ # πŸš€ Quantum AI Agent
330
+
331
+ This is an AI agent designed to optimize quantum computing algorithms using classical machine learning techniques.
332
+
333
+ ## Features:
334
+ - **Algorithm Optimization**: VQE, QAOA, QNN parameter optimization
335
+ - **Error Mitigation**: AI-powered quantum error correction
336
+ - **Resource Management**: Intelligent qubit allocation and scheduling
337
+ - **Hybrid Processing**: Quantum-classical algorithm integration
338
+ """)
339
+
340
+ with gr.Tabs():
341
+ # VQE Tab
342
+ with gr.TabItem("πŸ”¬ VQE Optimization"):
343
+ gr.Markdown("### Variational Quantum Eigensolver")
344
+ with gr.Row():
345
+ with gr.Column():
346
+ vqe_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
347
+ vqe_steps = gr.Slider(10, 1000, value=100, step=10, label="Optimization Steps")
348
+ vqe_button = gr.Button("Optimize VQE", variant="primary")
349
+
350
+ with gr.Column():
351
+ vqe_output = gr.Textbox(label="Results", lines=10)
352
+ vqe_plot = gr.Image(label="Visualization")
353
+
354
+ vqe_button.click(
355
+ interface.optimize_vqe,
356
+ inputs=[vqe_qubits, vqe_steps],
357
+ outputs=[vqe_output, vqe_plot]
358
+ )
359
+
360
+ # QAOA Tab
361
+ with gr.TabItem("🎯 QAOA Optimization"):
362
+ gr.Markdown("### Quantum Approximate Optimization Algorithm")
363
+ with gr.Row():
364
+ with gr.Column():
365
+ qaoa_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
366
+ qaoa_layers = gr.Slider(1, 5, value=2, step=1, label="Number of Layers")
367
+ qaoa_button = gr.Button("Optimize QAOA", variant="primary")
368
+
369
+ with gr.Column():
370
+ qaoa_output = gr.Textbox(label="Results", lines=10)
371
+ qaoa_plot = gr.Image(label="Visualization")
372
+
373
+ qaoa_button.click(
374
+ interface.optimize_qaoa,
375
+ inputs=[qaoa_qubits, qaoa_layers],
376
+ outputs=[qaoa_output, qaoa_plot]
377
+ )
378
+
379
+ # Error Mitigation Tab
380
+ with gr.TabItem("πŸ›‘οΈ Error Mitigation"):
381
+ gr.Markdown("### Quantum Error Correction")
382
+ with gr.Row():
383
+ with gr.Column():
384
+ error_qubits = gr.Slider(2, 5, value=3, step=1, label="Number of Qubits")
385
+ noise_level = gr.Slider(0.0, 0.5, value=0.1, step=0.01, label="Noise Level")
386
+ error_button = gr.Button("Apply Error Mitigation", variant="primary")
387
+
388
+ with gr.Column():
389
+ error_output = gr.Textbox(label="Results", lines=10)
390
+ error_plot = gr.Image(label="Visualization")
391
+
392
+ error_button.click(
393
+ interface.demonstrate_error_mitigation,
394
+ inputs=[error_qubits, noise_level],
395
+ outputs=[error_output, error_plot]
396
+ )
397
+
398
+ # Resource Management Tab
399
+ with gr.TabItem("⚑ Resource Management"):
400
+ gr.Markdown("### Quantum Resource Optimization")
401
+ with gr.Row():
402
+ with gr.Column():
403
+ num_circuits = gr.Slider(3, 20, value=10, step=1, label="Number of Circuits")
404
+ max_qubits = gr.Slider(2, 10, value=5, step=1, label="Max Qubits per Circuit")
405
+ available_qubits = gr.Slider(5, 20, value=10, step=1, label="Available Qubits")
406
+ resource_button = gr.Button("Optimize Resources", variant="primary")
407
+
408
+ with gr.Column():
409
+ resource_output = gr.Textbox(label="Results", lines=10)
410
+ resource_plot = gr.Image(label="Visualization")
411
+
412
+ resource_button.click(
413
+ interface.optimize_resources,
414
+ inputs=[num_circuits, max_qubits, available_qubits],
415
+ outputs=[resource_output, resource_plot]
416
+ )
417
+
418
+ # Hybrid Processing Tab
419
+ with gr.TabItem("πŸ”„ Hybrid Processing"):
420
+ gr.Markdown("### Quantum-Classical Hybrid Algorithms")
421
+ with gr.Row():
422
+ with gr.Column():
423
+ data_size = gr.Slider(10, 100, value=50, step=5, label="Data Size")
424
+ quantum_component = gr.Dropdown(
425
+ ["quantum_kernel", "quantum_feature_map", "quantum_neural_layer"],
426
+ value="quantum_kernel",
427
+ label="Quantum Component"
428
+ )
429
+ hybrid_button = gr.Button("Run Hybrid Processing", variant="primary")
430
+
431
+ with gr.Column():
432
+ hybrid_output = gr.Textbox(label="Results", lines=10)
433
+ hybrid_plot = gr.Image(label="Visualization")
434
+
435
+ hybrid_button.click(
436
+ interface.hybrid_processing_demo,
437
+ inputs=[data_size, quantum_component],
438
+ outputs=[hybrid_output, hybrid_plot]
439
+ )
440
+
441
+ gr.Markdown("""
442
+ ---
443
+ ### About
444
+ This Quantum AI Agent demonstrates the integration of classical AI techniques with quantum computing algorithms.
445
+ It showcases optimization strategies for VQE and QAOA, error mitigation using neural networks,
446
+ intelligent resource management, and hybrid quantum-classical processing.
447
+
448
+ **Note**: This is a simulation for demonstration purposes. Real quantum hardware integration would require
449
+ additional components and API connections.
450
+ """)
451
+
452
+ return demo
453
+
454
+ if __name__ == "__main__":
455
+ demo = create_interface()
456
+ demo.launch(
457
+ server_name="0.0.0.0",
458
+ server_port=7860,
459
+ share=True
460
+ )