CCockrum commited on
Commit
abefdbc
·
verified ·
1 Parent(s): a4e75a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +361 -443
app.py CHANGED
@@ -1,460 +1,378 @@
1
- import gradio as gr
2
  import numpy as np
3
  import torch
4
- import json
5
- import matplotlib.pyplot as plt
6
- import plotly.graph_objects as go
7
- import plotly.express as px
8
- from typing import Dict, List, Tuple, Any
9
  import logging
 
 
 
10
 
11
- # Import your quantum AI agent (assuming it's in quantum_agent.py)
12
- from quantum_agent import QuantumAIAgent, QuantumState, QuantumCircuit
13
-
14
- # Configure logging
15
- logging.basicConfig(level=logging.INFO)
16
  logger = logging.getLogger(__name__)
17
 
18
- class QuantumAIInterface:
19
- """Gradio interface for the Quantum AI Agent."""
 
 
 
 
20
 
21
- def __init__(self):
22
- self.agent = QuantumAIAgent()
23
- logger.info("Quantum AI Interface initialized")
 
 
 
 
 
 
 
 
24
 
25
- def optimize_vqe(self, num_qubits: int, optimization_steps: int) -> Tuple[str, str]:
26
- """VQE optimization interface."""
27
- try:
28
- # Create a random Hamiltonian
29
- dim = 2**num_qubits
30
- hamiltonian = np.random.random((dim, dim))
31
- hamiltonian = hamiltonian + hamiltonian.T # Make Hermitian
32
-
33
- # Initialize random parameters
34
- initial_params = np.random.random(num_qubits * 2)
35
-
36
- # Run optimization
37
- result = self.agent.optimize_quantum_algorithm("VQE", hamiltonian, initial_params)
38
-
39
- # Format results
40
- result_text = f"""
41
- VQE Optimization Results:
42
- ========================
43
- Ground State Energy: {result['ground_state_energy']:.6f}
44
- Optimization Success: {result['optimization_success']}
45
- Number of Iterations: {result['iterations']}
46
- Optimal Parameters: {np.array2string(result['optimal_parameters'], precision=4)}
47
- Circuit Depth: {result['optimal_circuit'].depth}
48
- """
49
-
50
- # Create visualization
51
- fig = plt.figure(figsize=(10, 6))
52
- plt.subplot(1, 2, 1)
53
- plt.plot(result['optimal_parameters'], 'bo-')
54
- plt.title('Optimal Parameters')
55
- plt.xlabel('Parameter Index')
56
- plt.ylabel('Value')
57
-
58
- plt.subplot(1, 2, 2)
59
- plt.bar(range(len(result['optimal_parameters'])), result['optimal_parameters'])
60
- plt.title('Parameter Distribution')
61
- plt.xlabel('Parameter Index')
62
- plt.ylabel('Value')
63
-
64
- plt.tight_layout()
65
- plt.savefig('vqe_results.png', dpi=150, bbox_inches='tight')
66
- plt.close()
67
-
68
- return result_text, 'vqe_results.png'
69
-
70
- except Exception as e:
71
- error_msg = f"Error in VQE optimization: {str(e)}"
72
- logger.error(error_msg)
73
- return error_msg, None
74
 
75
- def optimize_qaoa(self, num_qubits: int, num_layers: int) -> Tuple[str, str]:
76
- """QAOA optimization interface."""
77
- try:
78
- # Create problem Hamiltonian
79
- dim = 2**num_qubits
80
- hamiltonian = np.random.random((dim, dim))
81
- hamiltonian = hamiltonian + hamiltonian.T
82
-
83
- # Initialize QAOA parameters
84
- initial_params = np.random.random(2 * num_layers) # beta and gamma
85
-
86
- # Run optimization
87
- result = self.agent.optimize_quantum_algorithm("QAOA", hamiltonian, initial_params)
88
-
89
- result_text = f"""
90
- QAOA Optimization Results:
91
- =========================
92
- Optimal Value: {result['optimal_value']:.6f}
93
- Optimization Success: {result['optimization_success']}
94
- Number of Iterations: {result['iterations']}
95
- Optimal Beta: {np.array2string(result['optimal_beta'], precision=4)}
96
- Optimal Gamma: {np.array2string(result['optimal_gamma'], precision=4)}
97
- """
98
-
99
- # Create visualization
100
- fig = plt.figure(figsize=(12, 5))
101
-
102
- plt.subplot(1, 3, 1)
103
- plt.plot(result['optimal_beta'], 'ro-', label='Beta')
104
- plt.plot(result['optimal_gamma'], 'bo-', label='Gamma')
105
- plt.title('QAOA Parameters')
106
- plt.xlabel('Layer')
107
- plt.ylabel('Value')
108
- plt.legend()
109
-
110
- plt.subplot(1, 3, 2)
111
- plt.bar(range(len(result['optimal_beta'])), result['optimal_beta'], alpha=0.7, label='Beta')
112
- plt.title('Beta Parameters')
113
- plt.xlabel('Layer')
114
- plt.ylabel('Value')
115
-
116
- plt.subplot(1, 3, 3)
117
- plt.bar(range(len(result['optimal_gamma'])), result['optimal_gamma'], alpha=0.7, label='Gamma', color='orange')
118
- plt.title('Gamma Parameters')
119
- plt.xlabel('Layer')
120
- plt.ylabel('Value')
121
-
122
- plt.tight_layout()
123
- plt.savefig('qaoa_results.png', dpi=150, bbox_inches='tight')
124
- plt.close()
125
-
126
- return result_text, 'qaoa_results.png'
127
-
128
- except Exception as e:
129
- error_msg = f"Error in QAOA optimization: {str(e)}"
130
- logger.error(error_msg)
131
- return error_msg, None
132
 
133
- def demonstrate_error_mitigation(self, num_qubits: int, noise_level: float) -> Tuple[str, str]:
134
- """Error mitigation demonstration."""
135
- try:
136
- # Create a quantum state
137
- dim = 2**num_qubits
138
- amplitudes = np.random.random(dim) + 1j * np.random.random(dim)
139
- amplitudes = amplitudes / np.linalg.norm(amplitudes)
140
-
141
- quantum_state = QuantumState(
142
- amplitudes=amplitudes,
143
- num_qubits=num_qubits,
144
- fidelity=1.0 - noise_level
145
- )
146
-
147
- # Apply error mitigation
148
- noise_model = {"noise_factor": noise_level}
149
- corrected_state = self.agent.mitigate_errors(quantum_state, noise_model)
150
-
151
- result_text = f"""
152
- Error Mitigation Results:
153
- ========================
154
- Number of Qubits: {num_qubits}
155
- Original Fidelity: {quantum_state.fidelity:.4f}
156
- Corrected Fidelity: {corrected_state.fidelity:.4f}
157
- Fidelity Improvement: {corrected_state.fidelity - quantum_state.fidelity:.4f}
158
- Noise Level: {noise_level:.4f}
159
- """
160
-
161
- # Create visualization
162
- fig = plt.figure(figsize=(12, 5))
163
-
164
- plt.subplot(1, 3, 1)
165
- plt.bar(['Original', 'Corrected'], [quantum_state.fidelity, corrected_state.fidelity])
166
- plt.title('Fidelity Comparison')
167
- plt.ylabel('Fidelity')
168
- plt.ylim(0, 1)
169
-
170
- plt.subplot(1, 3, 2)
171
- plt.plot(np.abs(quantum_state.amplitudes), 'b-', label='Original', alpha=0.7)
172
- plt.plot(np.abs(corrected_state.amplitudes), 'r-', label='Corrected', alpha=0.7)
173
- plt.title('State Amplitudes (Magnitude)')
174
- plt.xlabel('Basis State')
175
- plt.ylabel('Amplitude')
176
- plt.legend()
177
-
178
- plt.subplot(1, 3, 3)
179
- improvement = corrected_state.fidelity - quantum_state.fidelity
180
- plt.bar(['Fidelity Improvement'], [improvement], color='green' if improvement > 0 else 'red')
181
- plt.title('Improvement')
182
- plt.ylabel('Fidelity Change')
183
-
184
- plt.tight_layout()
185
- plt.savefig('error_mitigation_results.png', dpi=150, bbox_inches='tight')
186
- plt.close()
187
-
188
- return result_text, 'error_mitigation_results.png'
189
-
190
- except Exception as e:
191
- error_msg = f"Error in error mitigation: {str(e)}"
192
- logger.error(error_msg)
193
- return error_msg, None
194
 
195
- def optimize_resources(self, num_circuits: int, max_qubits: int, available_qubits: int) -> Tuple[str, str]:
196
- """Resource optimization demonstration."""
197
- try:
198
- # Generate random circuits
199
- circuits = []
200
- for i in range(num_circuits):
201
- num_qubits = np.random.randint(2, min(max_qubits, available_qubits) + 1)
202
- depth = np.random.randint(5, 50)
203
- circuits.append(QuantumCircuit([], np.array([]), num_qubits, depth))
204
-
205
- # Optimize resources
206
- allocation_plan = self.agent.optimize_resources(circuits, available_qubits)
207
-
208
- result_text = f"""
209
- Resource Optimization Results:
210
- =============================
211
- Number of Circuits: {num_circuits}
212
- Available Qubits: {available_qubits}
213
- Resource Utilization: {allocation_plan['resource_utilization']:.2%}
214
- Estimated Runtime: {allocation_plan['estimated_runtime']:.2f} time units
215
- Scheduled Circuits: {len(allocation_plan['schedule'])}
216
- """
217
-
218
- if allocation_plan['schedule']:
219
- result_text += "\nSchedule Details:\n"
220
- for i, task in enumerate(allocation_plan['schedule'][:5]): # Show first 5
221
- result_text += f"Circuit {task['circuit_id']}: {task['qubits_allocated']} qubits, starts at {task['start_time']:.2f}\n"
222
-
223
- # Create visualization
224
- fig = plt.figure(figsize=(12, 8))
225
-
226
- # Resource utilization
227
- plt.subplot(2, 2, 1)
228
- plt.pie([allocation_plan['resource_utilization'], 1 - allocation_plan['resource_utilization']],
229
- labels=['Used', 'Available'], autopct='%1.1f%%')
230
- plt.title('Resource Utilization')
231
-
232
- # Circuit requirements
233
- plt.subplot(2, 2, 2)
234
- qubit_reqs = [c.num_qubits for c in circuits]
235
- plt.hist(qubit_reqs, bins=min(10, max_qubits), alpha=0.7)
236
- plt.title('Circuit Qubit Requirements')
237
- plt.xlabel('Number of Qubits')
238
- plt.ylabel('Frequency')
239
-
240
- # Circuit depths
241
- plt.subplot(2, 2, 3)
242
- depths = [c.depth for c in circuits]
243
- plt.hist(depths, bins=10, alpha=0.7, color='orange')
244
- plt.title('Circuit Depths')
245
- plt.xlabel('Depth')
246
- plt.ylabel('Frequency')
247
-
248
- # Schedule timeline
249
- plt.subplot(2, 2, 4)
250
- if allocation_plan['schedule']:
251
- start_times = [task['start_time'] for task in allocation_plan['schedule']]
252
- durations = [task['estimated_duration'] for task in allocation_plan['schedule']]
253
- plt.barh(range(len(start_times)), durations, left=start_times, alpha=0.7)
254
- plt.title('Schedule Timeline')
255
- plt.xlabel('Time')
256
- plt.ylabel('Circuit')
257
-
258
- plt.tight_layout()
259
- plt.savefig('resource_optimization_results.png', dpi=150, bbox_inches='tight')
260
- plt.close()
261
-
262
- return result_text, 'resource_optimization_results.png'
263
-
264
- except Exception as e:
265
- error_msg = f"Error in resource optimization: {str(e)}"
266
- logger.error(error_msg)
267
- return error_msg, None
268
 
269
- def hybrid_processing_demo(self, data_size: int, quantum_component: str) -> Tuple[str, str]:
270
- """Hybrid processing demonstration."""
271
- try:
272
- # Generate classical data
273
- classical_data = np.random.random(data_size)
274
-
275
- # Run hybrid processing
276
- result = self.agent.hybrid_processing(classical_data, quantum_component)
277
-
278
- result_text = f"""
279
- Hybrid Processing Results:
280
- =========================
281
- Input Data Size: {data_size}
282
- Quantum Component: {quantum_component}
283
- Output Statistics:
284
- Mean: {result['final_result']['statistics']['mean']:.6f}
285
- Std: {result['final_result']['statistics']['std']:.6f}
286
- Min: {result['final_result']['statistics']['min']:.6f}
287
- Max: {result['final_result']['statistics']['max']:.6f}
288
- Confidence: {result['final_result']['confidence']:.4f}
289
- """
290
-
291
- # Create visualization
292
- fig = plt.figure(figsize=(15, 5))
293
-
294
- plt.subplot(1, 3, 1)
295
- plt.plot(classical_data, 'b-', alpha=0.7)
296
- plt.title('Original Classical Data')
297
- plt.xlabel('Index')
298
- plt.ylabel('Value')
299
-
300
- plt.subplot(1, 3, 2)
301
- plt.plot(result['preprocessed_data'], 'g-', alpha=0.7)
302
- plt.title('Preprocessed Data')
303
- plt.xlabel('Index')
304
- plt.ylabel('Value')
305
-
306
- plt.subplot(1, 3, 3)
307
- plt.plot(result['quantum_result'].flatten(), 'r-', alpha=0.7)
308
- plt.title(f'Quantum Result ({quantum_component})')
309
- plt.xlabel('Index')
310
- plt.ylabel('Value')
311
-
312
- plt.tight_layout()
313
- plt.savefig('hybrid_processing_results.png', dpi=150, bbox_inches='tight')
314
- plt.close()
315
-
316
- return result_text, 'hybrid_processing_results.png'
317
-
318
- except Exception as e:
319
- error_msg = f"Error in hybrid processing: {str(e)}"
320
- logger.error(error_msg)
321
- return error_msg, None
322
 
323
- def create_interface():
324
- """Create the Gradio interface."""
325
- interface = QuantumAIInterface()
326
 
327
- with gr.Blocks(title="Quantum AI Agent", theme=gr.themes.Soft()) as demo:
328
- gr.Markdown("""
329
- # 🚀 Quantum AI Agent
330
-
331
- This is an AI agent designed to optimize quantum computing algorithms using classical machine learning techniques.
332
-
333
- ## Features:
334
- - **Algorithm Optimization**: VQE, QAOA, QNN parameter optimization
335
- - **Error Mitigation**: AI-powered quantum error correction
336
- - **Resource Management**: Intelligent qubit allocation and scheduling
337
- - **Hybrid Processing**: Quantum-classical algorithm integration
338
- """)
339
-
340
- with gr.Tabs():
341
- # VQE Tab
342
- with gr.TabItem("🔬 VQE Optimization"):
343
- gr.Markdown("### Variational Quantum Eigensolver")
344
- with gr.Row():
345
- with gr.Column():
346
- vqe_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
347
- vqe_steps = gr.Slider(10, 1000, value=100, step=10, label="Optimization Steps")
348
- vqe_button = gr.Button("Optimize VQE", variant="primary")
349
-
350
- with gr.Column():
351
- vqe_output = gr.Textbox(label="Results", lines=10)
352
- vqe_plot = gr.Image(label="Visualization")
353
-
354
- vqe_button.click(
355
- interface.optimize_vqe,
356
- inputs=[vqe_qubits, vqe_steps],
357
- outputs=[vqe_output, vqe_plot]
358
- )
359
-
360
- # QAOA Tab
361
- with gr.TabItem("🎯 QAOA Optimization"):
362
- gr.Markdown("### Quantum Approximate Optimization Algorithm")
363
- with gr.Row():
364
- with gr.Column():
365
- qaoa_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
366
- qaoa_layers = gr.Slider(1, 5, value=2, step=1, label="Number of Layers")
367
- qaoa_button = gr.Button("Optimize QAOA", variant="primary")
368
-
369
- with gr.Column():
370
- qaoa_output = gr.Textbox(label="Results", lines=10)
371
- qaoa_plot = gr.Image(label="Visualization")
372
-
373
- qaoa_button.click(
374
- interface.optimize_qaoa,
375
- inputs=[qaoa_qubits, qaoa_layers],
376
- outputs=[qaoa_output, qaoa_plot]
377
- )
378
-
379
- # Error Mitigation Tab
380
- with gr.TabItem("🛡️ Error Mitigation"):
381
- gr.Markdown("### Quantum Error Correction")
382
- with gr.Row():
383
- with gr.Column():
384
- error_qubits = gr.Slider(2, 5, value=3, step=1, label="Number of Qubits")
385
- noise_level = gr.Slider(0.0, 0.5, value=0.1, step=0.01, label="Noise Level")
386
- error_button = gr.Button("Apply Error Mitigation", variant="primary")
387
-
388
- with gr.Column():
389
- error_output = gr.Textbox(label="Results", lines=10)
390
- error_plot = gr.Image(label="Visualization")
391
-
392
- error_button.click(
393
- interface.demonstrate_error_mitigation,
394
- inputs=[error_qubits, noise_level],
395
- outputs=[error_output, error_plot]
396
- )
397
-
398
- # Resource Management Tab
399
- with gr.TabItem("⚡ Resource Management"):
400
- gr.Markdown("### Quantum Resource Optimization")
401
- with gr.Row():
402
- with gr.Column():
403
- num_circuits = gr.Slider(3, 20, value=10, step=1, label="Number of Circuits")
404
- max_qubits = gr.Slider(2, 10, value=5, step=1, label="Max Qubits per Circuit")
405
- available_qubits = gr.Slider(5, 20, value=10, step=1, label="Available Qubits")
406
- resource_button = gr.Button("Optimize Resources", variant="primary")
407
-
408
- with gr.Column():
409
- resource_output = gr.Textbox(label="Results", lines=10)
410
- resource_plot = gr.Image(label="Visualization")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411
 
412
- resource_button.click(
413
- interface.optimize_resources,
414
- inputs=[num_circuits, max_qubits, available_qubits],
415
- outputs=[resource_output, resource_plot]
416
- )
417
-
418
- # Hybrid Processing Tab
419
- with gr.TabItem("🔄 Hybrid Processing"):
420
- gr.Markdown("### Quantum-Classical Hybrid Algorithms")
421
- with gr.Row():
422
- with gr.Column():
423
- data_size = gr.Slider(10, 100, value=50, step=5, label="Data Size")
424
- quantum_component = gr.Dropdown(
425
- ["quantum_kernel", "quantum_feature_map", "quantum_neural_layer"],
426
- value="quantum_kernel",
427
- label="Quantum Component"
428
- )
429
- hybrid_button = gr.Button("Run Hybrid Processing", variant="primary")
430
-
431
- with gr.Column():
432
- hybrid_output = gr.Textbox(label="Results", lines=10)
433
- hybrid_plot = gr.Image(label="Visualization")
434
 
435
- hybrid_button.click(
436
- interface.hybrid_processing_demo,
437
- inputs=[data_size, quantum_component],
438
- outputs=[hybrid_output, hybrid_plot]
439
- )
440
-
441
- gr.Markdown("""
442
- ---
443
- ### About
444
- This Quantum AI Agent demonstrates the integration of classical AI techniques with quantum computing algorithms.
445
- It showcases optimization strategies for VQE and QAOA, error mitigation using neural networks,
446
- intelligent resource management, and hybrid quantum-classical processing.
447
-
448
- **Note**: This is a simulation for demonstration purposes. Real quantum hardware integration would require
449
- additional components and API connections.
450
- """)
451
 
452
- return demo
453
-
454
- if __name__ == "__main__":
455
- demo = create_interface()
456
- demo.launch(
457
- server_name="0.0.0.0",
458
- server_port=7860,
459
- share=True
460
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import numpy as np
2
  import torch
3
+ import torch.nn as nn
4
+ import torch.optim as optim
5
+ from typing import Dict, List, Tuple, Any, Optional
 
 
6
  import logging
7
+ from dataclasses import dataclass
8
+ from scipy.optimize import minimize
9
+ import json
10
 
 
 
 
 
 
11
  logger = logging.getLogger(__name__)
12
 
13
+ @dataclass
14
+ class QuantumState:
15
+ """Represents a quantum state."""
16
+ amplitudes: np.ndarray
17
+ num_qubits: int
18
+ fidelity: float = 1.0
19
 
20
+ def __post_init__(self):
21
+ """Normalize amplitudes after initialization."""
22
+ self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes)
23
+
24
+ @dataclass
25
+ class QuantumCircuit:
26
+ """Represents a quantum circuit."""
27
+ gates: List[str]
28
+ parameters: np.ndarray
29
+ num_qubits: int
30
+ depth: int
31
 
32
+ def __post_init__(self):
33
+ """Initialize circuit properties."""
34
+ if len(self.gates) == 0:
35
+ # Generate some default gates for demonstration
36
+ gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H']
37
+ self.gates = [np.random.choice(gate_types) for _ in range(self.depth)]
38
+
39
+ class QuantumNeuralNetwork(nn.Module):
40
+ """Neural network for quantum parameter optimization."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1):
43
+ super().__init__()
44
+ self.network = nn.Sequential(
45
+ nn.Linear(input_dim, hidden_dim),
46
+ nn.ReLU(),
47
+ nn.Linear(hidden_dim, hidden_dim),
48
+ nn.ReLU(),
49
+ nn.Linear(hidden_dim, output_dim)
50
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
+ def forward(self, x):
53
+ return self.network(x)
54
+
55
+ class ErrorMitigationNetwork(nn.Module):
56
+ """Neural network for quantum error mitigation."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ def __init__(self, state_dim: int, hidden_dim: int = 128):
59
+ super().__init__()
60
+ self.encoder = nn.Sequential(
61
+ nn.Linear(state_dim * 2, hidden_dim), # *2 for real and imaginary parts
62
+ nn.ReLU(),
63
+ nn.Linear(hidden_dim, hidden_dim),
64
+ nn.ReLU()
65
+ )
66
+
67
+ self.decoder = nn.Sequential(
68
+ nn.Linear(hidden_dim, hidden_dim),
69
+ nn.ReLU(),
70
+ nn.Linear(hidden_dim, state_dim * 2),
71
+ nn.Tanh()
72
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
+ def forward(self, x):
75
+ encoded = self.encoder(x)
76
+ decoded = self.decoder(encoded)
77
+ return decoded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
+ class QuantumAIAgent:
80
+ """AI agent for quantum computing optimization."""
 
81
 
82
+ def __init__(self):
83
+ """Initialize the quantum AI agent."""
84
+ self.optimization_history = []
85
+ self.error_mitigation_net = None
86
+ self.parameter_optimizer = None
87
+ logger.info("QuantumAIAgent initialized")
88
+
89
+ def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray,
90
+ initial_params: np.ndarray) -> Dict[str, Any]:
91
+ """Optimize quantum algorithm parameters."""
92
+ logger.info(f"Optimizing {algorithm} algorithm")
93
+
94
+ if algorithm == "VQE":
95
+ return self._optimize_vqe(hamiltonian, initial_params)
96
+ elif algorithm == "QAOA":
97
+ return self._optimize_qaoa(hamiltonian, initial_params)
98
+ else:
99
+ raise ValueError(f"Unknown algorithm: {algorithm}")
100
+
101
+ def _optimize_vqe(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
102
+ """Optimize VQE parameters."""
103
+ def objective(params):
104
+ # Simulate VQE energy calculation
105
+ # In practice, this would involve quantum circuit simulation
106
+ circuit_result = self._simulate_vqe_circuit(params, hamiltonian)
107
+ return circuit_result
108
+
109
+ # Use classical optimization
110
+ result = minimize(objective, initial_params, method='BFGS')
111
+
112
+ # Create optimal circuit
113
+ optimal_circuit = QuantumCircuit(
114
+ gates=[],
115
+ parameters=result.x,
116
+ num_qubits=int(np.log2(hamiltonian.shape[0])),
117
+ depth=len(result.x) // 2
118
+ )
119
+
120
+ return {
121
+ 'ground_state_energy': result.fun,
122
+ 'optimization_success': result.success,
123
+ 'iterations': result.nit,
124
+ 'optimal_parameters': result.x,
125
+ 'optimal_circuit': optimal_circuit
126
+ }
127
+
128
+ def _optimize_qaoa(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
129
+ """Optimize QAOA parameters."""
130
+ num_layers = len(initial_params) // 2
131
+
132
+ def objective(params):
133
+ beta = params[:num_layers]
134
+ gamma = params[num_layers:]
135
+ return self._simulate_qaoa_circuit(beta, gamma, hamiltonian)
136
+
137
+ result = minimize(objective, initial_params, method='COBYLA')
138
+
139
+ return {
140
+ 'optimal_value': -result.fun, # Minimize negative for maximization
141
+ 'optimization_success': result.success,
142
+ 'iterations': result.nit,
143
+ 'optimal_beta': result.x[:num_layers],
144
+ 'optimal_gamma': result.x[num_layers:]
145
+ }
146
+
147
+ def _simulate_vqe_circuit(self, params: np.ndarray, hamiltonian: np.ndarray) -> float:
148
+ """Simulate VQE circuit and return energy expectation."""
149
+ # Simplified simulation - create parameterized state
150
+ num_qubits = int(np.log2(hamiltonian.shape[0]))
151
+
152
+ # Create a parameterized quantum state (simplified)
153
+ angles = params[:num_qubits]
154
+ state = np.zeros(2**num_qubits, dtype=complex)
155
+
156
+ # Simple parameterization: each qubit gets a rotation
157
+ for i in range(2**num_qubits):
158
+ amplitude = 1.0
159
+ for q in range(num_qubits):
160
+ if (i >> q) & 1:
161
+ amplitude *= np.sin(angles[q % len(angles)])
162
+ else:
163
+ amplitude *= np.cos(angles[q % len(angles)])
164
+ state[i] = amplitude
165
+
166
+ # Normalize
167
+ state = state / np.linalg.norm(state)
168
+
169
+ # Calculate expectation value
170
+ energy = np.real(np.conj(state).T @ hamiltonian @ state)
171
+ return energy
172
+
173
+ def _simulate_qaoa_circuit(self, beta: np.ndarray, gamma: np.ndarray, hamiltonian: np.ndarray) -> float:
174
+ """Simulate QAOA circuit and return objective value."""
175
+ # Simplified QAOA simulation
176
+ num_qubits = int(np.log2(hamiltonian.shape[0]))
177
+
178
+ # Start with uniform superposition
179
+ state = np.ones(2**num_qubits, dtype=complex) / np.sqrt(2**num_qubits)
180
+
181
+ # Apply QAOA layers (simplified)
182
+ for i in range(len(beta)):
183
+ # Problem Hamiltonian evolution (simplified)
184
+ phase_factors = np.exp(-1j * gamma[i] * np.diag(hamiltonian))
185
+ state = phase_factors * state
186
+
187
+ # Mixer Hamiltonian evolution (simplified X rotations)
188
+ # This is a very simplified version
189
+ for q in range(num_qubits):
190
+ # Apply rotation (simplified)
191
+ rotation_factor = np.cos(beta[i]) + 1j * np.sin(beta[i])
192
+ state = state * rotation_factor
193
+
194
+ # Normalize
195
+ state = state / np.linalg.norm(state)
196
+
197
+ # Calculate expectation value
198
+ expectation = np.real(np.conj(state).T @ hamiltonian @ state)
199
+ return -expectation # Return negative for minimization
200
+
201
+ def mitigate_errors(self, quantum_state: QuantumState, noise_model: Dict[str, Any]) -> QuantumState:
202
+ """Apply AI-powered error mitigation."""
203
+ logger.info("Applying error mitigation")
204
+
205
+ # Initialize error mitigation network if not exists
206
+ if self.error_mitigation_net is None:
207
+ state_dim = len(quantum_state.amplitudes)
208
+ self.error_mitigation_net = ErrorMitigationNetwork(state_dim)
209
+
210
+ # Convert quantum state to real input (real and imaginary parts)
211
+ state_real = np.real(quantum_state.amplitudes)
212
+ state_imag = np.imag(quantum_state.amplitudes)
213
+ input_data = np.concatenate([state_real, state_imag])
214
+
215
+ # Apply noise simulation
216
+ noise_factor = noise_model.get('noise_factor', 0.1)
217
+ noisy_input = input_data + np.random.normal(0, noise_factor, input_data.shape)
218
+
219
+ # Apply error mitigation (simplified - in practice would be trained)
220
+ with torch.no_grad():
221
+ input_tensor = torch.FloatTensor(noisy_input).unsqueeze(0)
222
+ corrected_output = self.error_mitigation_net(input_tensor).squeeze(0).numpy()
223
+
224
+ # Convert back to complex amplitudes
225
+ mid_point = len(corrected_output) // 2
226
+ corrected_real = corrected_output[:mid_point]
227
+ corrected_imag = corrected_output[mid_point:]
228
+ corrected_amplitudes = corrected_real + 1j * corrected_imag
229
+
230
+ # Normalize
231
+ corrected_amplitudes = corrected_amplitudes / np.linalg.norm(corrected_amplitudes)
232
+
233
+ # Calculate improved fidelity
234
+ original_fidelity = quantum_state.fidelity
235
+ fidelity_improvement = min(0.1, noise_factor * 0.5) # Simplified improvement
236
+ new_fidelity = min(1.0, original_fidelity + fidelity_improvement)
237
+
238
+ return QuantumState(
239
+ amplitudes=corrected_amplitudes,
240
+ num_qubits=quantum_state.num_qubits,
241
+ fidelity=new_fidelity
242
+ )
243
+
244
+ def optimize_resources(self, circuits: List[QuantumCircuit], available_qubits: int) -> Dict[str, Any]:
245
+ """Optimize quantum resource allocation."""
246
+ logger.info(f"Optimizing resources for {len(circuits)} circuits with {available_qubits} qubits")
247
+
248
+ # Simple scheduling algorithm
249
+ schedule = []
250
+ current_time = 0
251
+ total_qubits_used = 0
252
+
253
+ # Sort circuits by qubit requirement (First-Fit Decreasing)
254
+ sorted_circuits = sorted(enumerate(circuits), key=lambda x: x[1].num_qubits, reverse=True)
255
+
256
+ for circuit_id, circuit in sorted_circuits:
257
+ if circuit.num_qubits <= available_qubits:
258
+ # Estimate execution time based on circuit depth
259
+ estimated_duration = circuit.depth * 0.1 # 0.1 time units per gate
260
 
261
+ schedule.append({
262
+ 'circuit_id': circuit_id,
263
+ 'qubits_allocated': circuit.num_qubits,
264
+ 'start_time': current_time,
265
+ 'estimated_duration': estimated_duration
266
+ })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
 
268
+ current_time += estimated_duration
269
+ total_qubits_used += circuit.num_qubits
270
+
271
+ # Calculate resource utilization
272
+ max_possible_qubits = len(circuits) * available_qubits
273
+ resource_utilization = total_qubits_used / max_possible_qubits if max_possible_qubits > 0 else 0
274
+
275
+ return {
276
+ 'schedule': schedule,
277
+ 'resource_utilization': resource_utilization,
278
+ 'estimated_runtime': current_time,
279
+ 'circuits_scheduled': len(schedule)
280
+ }
 
 
 
281
 
282
+ def hybrid_processing(self, classical_data: np.ndarray, quantum_component: str) -> Dict[str, Any]:
283
+ """Perform hybrid quantum-classical processing."""
284
+ logger.info(f"Running hybrid processing with {quantum_component}")
285
+
286
+ # Preprocess classical data
287
+ preprocessed_data = self._preprocess_classical_data(classical_data)
288
+
289
+ # Apply quantum component
290
+ if quantum_component == "quantum_kernel":
291
+ quantum_result = self._apply_quantum_kernel(preprocessed_data)
292
+ elif quantum_component == "quantum_feature_map":
293
+ quantum_result = self._apply_quantum_feature_map(preprocessed_data)
294
+ elif quantum_component == "quantum_neural_layer":
295
+ quantum_result = self._apply_quantum_neural_layer(preprocessed_data)
296
+ else:
297
+ raise ValueError(f"Unknown quantum component: {quantum_component}")
298
+
299
+ # Post-process results
300
+ final_result = self._postprocess_quantum_result(quantum_result)
301
+
302
+ return {
303
+ 'preprocessed_data': preprocessed_data,
304
+ 'quantum_result': quantum_result,
305
+ 'final_result': final_result
306
+ }
307
+
308
+ def _preprocess_classical_data(self, data: np.ndarray) -> np.ndarray:
309
+ """Preprocess classical data for quantum processing."""
310
+ # Normalize data
311
+ normalized_data = (data - np.mean(data)) / (np.std(data) + 1e-8)
312
+
313
+ # Apply some classical preprocessing
314
+ processed_data = np.tanh(normalized_data) # Squash to [-1, 1]
315
+
316
+ return processed_data
317
+
318
+ def _apply_quantum_kernel(self, data: np.ndarray) -> np.ndarray:
319
+ """Apply quantum kernel transformation."""
320
+ # Simulate quantum kernel computation
321
+ # In practice, this would involve quantum feature maps
322
+ kernel_matrix = np.zeros((len(data), len(data)))
323
+
324
+ for i in range(len(data)):
325
+ for j in range(len(data)):
326
+ # Simplified quantum kernel (RBF-like with quantum enhancement)
327
+ diff = data[i] - data[j]
328
+ quantum_enhancement = np.cos(np.pi * diff) * np.exp(-0.5 * diff**2)
329
+ kernel_matrix[i, j] = quantum_enhancement
330
+
331
+ return kernel_matrix
332
+
333
+ def _apply_quantum_feature_map(self, data: np.ndarray) -> np.ndarray:
334
+ """Apply quantum feature map."""
335
+ # Simulate quantum feature mapping
336
+ num_features = len(data)
337
+ quantum_features = np.zeros(num_features * 2) # Expand feature space
338
+
339
+ for i, x in enumerate(data):
340
+ # Simulate quantum feature encoding
341
+ quantum_features[2*i] = np.cos(np.pi * x)
342
+ quantum_features[2*i + 1] = np.sin(np.pi * x)
343
+
344
+ return quantum_features
345
+
346
+ def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray:
347
+ """Apply quantum neural network layer."""
348
+ # Simulate quantum neural network layer
349
+ output_size = len(data)
350
+ quantum_output = np.zeros(output_size)
351
+
352
+ # Simplified quantum neural transformation
353
+ for i, x in enumerate(data):
354
+ # Simulate parameterized quantum circuit
355
+ theta = x * np.pi / 4 # Parameter encoding
356
+ quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2)
357
+
358
+ return quantum_output
359
+
360
+ def _postprocess_quantum_result(self, quantum_result: np.ndarray) -> Dict[str, Any]:
361
+ """Post-process quantum results."""
362
+ # Calculate statistics
363
+ stats = {
364
+ 'mean': np.mean(quantum_result),
365
+ 'std': np.std(quantum_result),
366
+ 'min': np.min(quantum_result),
367
+ 'max': np.max(quantum_result)
368
+ }
369
+
370
+ # Calculate confidence (simplified)
371
+ confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8)
372
+ confidence = max(0, min(1, confidence))
373
+
374
+ return {
375
+ 'statistics': stats,
376
+ 'confidence': confidence,
377
+ 'processed_data': quantum_result
378
+ }