Update app.py
Browse files
app.py
CHANGED
@@ -1,460 +1,378 @@
|
|
1 |
-
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
7 |
-
import plotly.express as px
|
8 |
-
from typing import Dict, List, Tuple, Any
|
9 |
import logging
|
|
|
|
|
|
|
10 |
|
11 |
-
# Import your quantum AI agent (assuming it's in quantum_agent.py)
|
12 |
-
from quantum_agent import QuantumAIAgent, QuantumState, QuantumCircuit
|
13 |
-
|
14 |
-
# Configure logging
|
15 |
-
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
def
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
def
|
26 |
-
"""
|
27 |
-
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
initial_params = np.random.random(num_qubits * 2)
|
35 |
-
|
36 |
-
# Run optimization
|
37 |
-
result = self.agent.optimize_quantum_algorithm("VQE", hamiltonian, initial_params)
|
38 |
-
|
39 |
-
# Format results
|
40 |
-
result_text = f"""
|
41 |
-
VQE Optimization Results:
|
42 |
-
========================
|
43 |
-
Ground State Energy: {result['ground_state_energy']:.6f}
|
44 |
-
Optimization Success: {result['optimization_success']}
|
45 |
-
Number of Iterations: {result['iterations']}
|
46 |
-
Optimal Parameters: {np.array2string(result['optimal_parameters'], precision=4)}
|
47 |
-
Circuit Depth: {result['optimal_circuit'].depth}
|
48 |
-
"""
|
49 |
-
|
50 |
-
# Create visualization
|
51 |
-
fig = plt.figure(figsize=(10, 6))
|
52 |
-
plt.subplot(1, 2, 1)
|
53 |
-
plt.plot(result['optimal_parameters'], 'bo-')
|
54 |
-
plt.title('Optimal Parameters')
|
55 |
-
plt.xlabel('Parameter Index')
|
56 |
-
plt.ylabel('Value')
|
57 |
-
|
58 |
-
plt.subplot(1, 2, 2)
|
59 |
-
plt.bar(range(len(result['optimal_parameters'])), result['optimal_parameters'])
|
60 |
-
plt.title('Parameter Distribution')
|
61 |
-
plt.xlabel('Parameter Index')
|
62 |
-
plt.ylabel('Value')
|
63 |
-
|
64 |
-
plt.tight_layout()
|
65 |
-
plt.savefig('vqe_results.png', dpi=150, bbox_inches='tight')
|
66 |
-
plt.close()
|
67 |
-
|
68 |
-
return result_text, 'vqe_results.png'
|
69 |
-
|
70 |
-
except Exception as e:
|
71 |
-
error_msg = f"Error in VQE optimization: {str(e)}"
|
72 |
-
logger.error(error_msg)
|
73 |
-
return error_msg, None
|
74 |
|
75 |
-
def
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
initial_params = np.random.random(2 * num_layers) # beta and gamma
|
85 |
-
|
86 |
-
# Run optimization
|
87 |
-
result = self.agent.optimize_quantum_algorithm("QAOA", hamiltonian, initial_params)
|
88 |
-
|
89 |
-
result_text = f"""
|
90 |
-
QAOA Optimization Results:
|
91 |
-
=========================
|
92 |
-
Optimal Value: {result['optimal_value']:.6f}
|
93 |
-
Optimization Success: {result['optimization_success']}
|
94 |
-
Number of Iterations: {result['iterations']}
|
95 |
-
Optimal Beta: {np.array2string(result['optimal_beta'], precision=4)}
|
96 |
-
Optimal Gamma: {np.array2string(result['optimal_gamma'], precision=4)}
|
97 |
-
"""
|
98 |
-
|
99 |
-
# Create visualization
|
100 |
-
fig = plt.figure(figsize=(12, 5))
|
101 |
-
|
102 |
-
plt.subplot(1, 3, 1)
|
103 |
-
plt.plot(result['optimal_beta'], 'ro-', label='Beta')
|
104 |
-
plt.plot(result['optimal_gamma'], 'bo-', label='Gamma')
|
105 |
-
plt.title('QAOA Parameters')
|
106 |
-
plt.xlabel('Layer')
|
107 |
-
plt.ylabel('Value')
|
108 |
-
plt.legend()
|
109 |
-
|
110 |
-
plt.subplot(1, 3, 2)
|
111 |
-
plt.bar(range(len(result['optimal_beta'])), result['optimal_beta'], alpha=0.7, label='Beta')
|
112 |
-
plt.title('Beta Parameters')
|
113 |
-
plt.xlabel('Layer')
|
114 |
-
plt.ylabel('Value')
|
115 |
-
|
116 |
-
plt.subplot(1, 3, 3)
|
117 |
-
plt.bar(range(len(result['optimal_gamma'])), result['optimal_gamma'], alpha=0.7, label='Gamma', color='orange')
|
118 |
-
plt.title('Gamma Parameters')
|
119 |
-
plt.xlabel('Layer')
|
120 |
-
plt.ylabel('Value')
|
121 |
-
|
122 |
-
plt.tight_layout()
|
123 |
-
plt.savefig('qaoa_results.png', dpi=150, bbox_inches='tight')
|
124 |
-
plt.close()
|
125 |
-
|
126 |
-
return result_text, 'qaoa_results.png'
|
127 |
-
|
128 |
-
except Exception as e:
|
129 |
-
error_msg = f"Error in QAOA optimization: {str(e)}"
|
130 |
-
logger.error(error_msg)
|
131 |
-
return error_msg, None
|
132 |
|
133 |
-
def
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
amplitudes = np.random.random(dim) + 1j * np.random.random(dim)
|
139 |
-
amplitudes = amplitudes / np.linalg.norm(amplitudes)
|
140 |
-
|
141 |
-
quantum_state = QuantumState(
|
142 |
-
amplitudes=amplitudes,
|
143 |
-
num_qubits=num_qubits,
|
144 |
-
fidelity=1.0 - noise_level
|
145 |
-
)
|
146 |
-
|
147 |
-
# Apply error mitigation
|
148 |
-
noise_model = {"noise_factor": noise_level}
|
149 |
-
corrected_state = self.agent.mitigate_errors(quantum_state, noise_model)
|
150 |
-
|
151 |
-
result_text = f"""
|
152 |
-
Error Mitigation Results:
|
153 |
-
========================
|
154 |
-
Number of Qubits: {num_qubits}
|
155 |
-
Original Fidelity: {quantum_state.fidelity:.4f}
|
156 |
-
Corrected Fidelity: {corrected_state.fidelity:.4f}
|
157 |
-
Fidelity Improvement: {corrected_state.fidelity - quantum_state.fidelity:.4f}
|
158 |
-
Noise Level: {noise_level:.4f}
|
159 |
-
"""
|
160 |
-
|
161 |
-
# Create visualization
|
162 |
-
fig = plt.figure(figsize=(12, 5))
|
163 |
-
|
164 |
-
plt.subplot(1, 3, 1)
|
165 |
-
plt.bar(['Original', 'Corrected'], [quantum_state.fidelity, corrected_state.fidelity])
|
166 |
-
plt.title('Fidelity Comparison')
|
167 |
-
plt.ylabel('Fidelity')
|
168 |
-
plt.ylim(0, 1)
|
169 |
-
|
170 |
-
plt.subplot(1, 3, 2)
|
171 |
-
plt.plot(np.abs(quantum_state.amplitudes), 'b-', label='Original', alpha=0.7)
|
172 |
-
plt.plot(np.abs(corrected_state.amplitudes), 'r-', label='Corrected', alpha=0.7)
|
173 |
-
plt.title('State Amplitudes (Magnitude)')
|
174 |
-
plt.xlabel('Basis State')
|
175 |
-
plt.ylabel('Amplitude')
|
176 |
-
plt.legend()
|
177 |
-
|
178 |
-
plt.subplot(1, 3, 3)
|
179 |
-
improvement = corrected_state.fidelity - quantum_state.fidelity
|
180 |
-
plt.bar(['Fidelity Improvement'], [improvement], color='green' if improvement > 0 else 'red')
|
181 |
-
plt.title('Improvement')
|
182 |
-
plt.ylabel('Fidelity Change')
|
183 |
-
|
184 |
-
plt.tight_layout()
|
185 |
-
plt.savefig('error_mitigation_results.png', dpi=150, bbox_inches='tight')
|
186 |
-
plt.close()
|
187 |
-
|
188 |
-
return result_text, 'error_mitigation_results.png'
|
189 |
-
|
190 |
-
except Exception as e:
|
191 |
-
error_msg = f"Error in error mitigation: {str(e)}"
|
192 |
-
logger.error(error_msg)
|
193 |
-
return error_msg, None
|
194 |
|
195 |
-
def
|
196 |
-
|
197 |
-
|
198 |
-
#
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
=============================
|
211 |
-
Number of Circuits: {num_circuits}
|
212 |
-
Available Qubits: {available_qubits}
|
213 |
-
Resource Utilization: {allocation_plan['resource_utilization']:.2%}
|
214 |
-
Estimated Runtime: {allocation_plan['estimated_runtime']:.2f} time units
|
215 |
-
Scheduled Circuits: {len(allocation_plan['schedule'])}
|
216 |
-
"""
|
217 |
-
|
218 |
-
if allocation_plan['schedule']:
|
219 |
-
result_text += "\nSchedule Details:\n"
|
220 |
-
for i, task in enumerate(allocation_plan['schedule'][:5]): # Show first 5
|
221 |
-
result_text += f"Circuit {task['circuit_id']}: {task['qubits_allocated']} qubits, starts at {task['start_time']:.2f}\n"
|
222 |
-
|
223 |
-
# Create visualization
|
224 |
-
fig = plt.figure(figsize=(12, 8))
|
225 |
-
|
226 |
-
# Resource utilization
|
227 |
-
plt.subplot(2, 2, 1)
|
228 |
-
plt.pie([allocation_plan['resource_utilization'], 1 - allocation_plan['resource_utilization']],
|
229 |
-
labels=['Used', 'Available'], autopct='%1.1f%%')
|
230 |
-
plt.title('Resource Utilization')
|
231 |
-
|
232 |
-
# Circuit requirements
|
233 |
-
plt.subplot(2, 2, 2)
|
234 |
-
qubit_reqs = [c.num_qubits for c in circuits]
|
235 |
-
plt.hist(qubit_reqs, bins=min(10, max_qubits), alpha=0.7)
|
236 |
-
plt.title('Circuit Qubit Requirements')
|
237 |
-
plt.xlabel('Number of Qubits')
|
238 |
-
plt.ylabel('Frequency')
|
239 |
-
|
240 |
-
# Circuit depths
|
241 |
-
plt.subplot(2, 2, 3)
|
242 |
-
depths = [c.depth for c in circuits]
|
243 |
-
plt.hist(depths, bins=10, alpha=0.7, color='orange')
|
244 |
-
plt.title('Circuit Depths')
|
245 |
-
plt.xlabel('Depth')
|
246 |
-
plt.ylabel('Frequency')
|
247 |
-
|
248 |
-
# Schedule timeline
|
249 |
-
plt.subplot(2, 2, 4)
|
250 |
-
if allocation_plan['schedule']:
|
251 |
-
start_times = [task['start_time'] for task in allocation_plan['schedule']]
|
252 |
-
durations = [task['estimated_duration'] for task in allocation_plan['schedule']]
|
253 |
-
plt.barh(range(len(start_times)), durations, left=start_times, alpha=0.7)
|
254 |
-
plt.title('Schedule Timeline')
|
255 |
-
plt.xlabel('Time')
|
256 |
-
plt.ylabel('Circuit')
|
257 |
-
|
258 |
-
plt.tight_layout()
|
259 |
-
plt.savefig('resource_optimization_results.png', dpi=150, bbox_inches='tight')
|
260 |
-
plt.close()
|
261 |
-
|
262 |
-
return result_text, 'resource_optimization_results.png'
|
263 |
-
|
264 |
-
except Exception as e:
|
265 |
-
error_msg = f"Error in resource optimization: {str(e)}"
|
266 |
-
logger.error(error_msg)
|
267 |
-
return error_msg, None
|
268 |
|
269 |
-
def
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
classical_data = np.random.random(data_size)
|
274 |
-
|
275 |
-
# Run hybrid processing
|
276 |
-
result = self.agent.hybrid_processing(classical_data, quantum_component)
|
277 |
-
|
278 |
-
result_text = f"""
|
279 |
-
Hybrid Processing Results:
|
280 |
-
=========================
|
281 |
-
Input Data Size: {data_size}
|
282 |
-
Quantum Component: {quantum_component}
|
283 |
-
Output Statistics:
|
284 |
-
Mean: {result['final_result']['statistics']['mean']:.6f}
|
285 |
-
Std: {result['final_result']['statistics']['std']:.6f}
|
286 |
-
Min: {result['final_result']['statistics']['min']:.6f}
|
287 |
-
Max: {result['final_result']['statistics']['max']:.6f}
|
288 |
-
Confidence: {result['final_result']['confidence']:.4f}
|
289 |
-
"""
|
290 |
-
|
291 |
-
# Create visualization
|
292 |
-
fig = plt.figure(figsize=(15, 5))
|
293 |
-
|
294 |
-
plt.subplot(1, 3, 1)
|
295 |
-
plt.plot(classical_data, 'b-', alpha=0.7)
|
296 |
-
plt.title('Original Classical Data')
|
297 |
-
plt.xlabel('Index')
|
298 |
-
plt.ylabel('Value')
|
299 |
-
|
300 |
-
plt.subplot(1, 3, 2)
|
301 |
-
plt.plot(result['preprocessed_data'], 'g-', alpha=0.7)
|
302 |
-
plt.title('Preprocessed Data')
|
303 |
-
plt.xlabel('Index')
|
304 |
-
plt.ylabel('Value')
|
305 |
-
|
306 |
-
plt.subplot(1, 3, 3)
|
307 |
-
plt.plot(result['quantum_result'].flatten(), 'r-', alpha=0.7)
|
308 |
-
plt.title(f'Quantum Result ({quantum_component})')
|
309 |
-
plt.xlabel('Index')
|
310 |
-
plt.ylabel('Value')
|
311 |
-
|
312 |
-
plt.tight_layout()
|
313 |
-
plt.savefig('hybrid_processing_results.png', dpi=150, bbox_inches='tight')
|
314 |
-
plt.close()
|
315 |
-
|
316 |
-
return result_text, 'hybrid_processing_results.png'
|
317 |
-
|
318 |
-
except Exception as e:
|
319 |
-
error_msg = f"Error in hybrid processing: {str(e)}"
|
320 |
-
logger.error(error_msg)
|
321 |
-
return error_msg, None
|
322 |
|
323 |
-
|
324 |
-
"""
|
325 |
-
interface = QuantumAIInterface()
|
326 |
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
# Hybrid Processing Tab
|
419 |
-
with gr.TabItem("🔄 Hybrid Processing"):
|
420 |
-
gr.Markdown("### Quantum-Classical Hybrid Algorithms")
|
421 |
-
with gr.Row():
|
422 |
-
with gr.Column():
|
423 |
-
data_size = gr.Slider(10, 100, value=50, step=5, label="Data Size")
|
424 |
-
quantum_component = gr.Dropdown(
|
425 |
-
["quantum_kernel", "quantum_feature_map", "quantum_neural_layer"],
|
426 |
-
value="quantum_kernel",
|
427 |
-
label="Quantum Component"
|
428 |
-
)
|
429 |
-
hybrid_button = gr.Button("Run Hybrid Processing", variant="primary")
|
430 |
-
|
431 |
-
with gr.Column():
|
432 |
-
hybrid_output = gr.Textbox(label="Results", lines=10)
|
433 |
-
hybrid_plot = gr.Image(label="Visualization")
|
434 |
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
**Note**: This is a simulation for demonstration purposes. Real quantum hardware integration would require
|
449 |
-
additional components and API connections.
|
450 |
-
""")
|
451 |
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.optim as optim
|
5 |
+
from typing import Dict, List, Tuple, Any, Optional
|
|
|
|
|
6 |
import logging
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from scipy.optimize import minimize
|
9 |
+
import json
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
13 |
+
@dataclass
|
14 |
+
class QuantumState:
|
15 |
+
"""Represents a quantum state."""
|
16 |
+
amplitudes: np.ndarray
|
17 |
+
num_qubits: int
|
18 |
+
fidelity: float = 1.0
|
19 |
|
20 |
+
def __post_init__(self):
|
21 |
+
"""Normalize amplitudes after initialization."""
|
22 |
+
self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes)
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class QuantumCircuit:
|
26 |
+
"""Represents a quantum circuit."""
|
27 |
+
gates: List[str]
|
28 |
+
parameters: np.ndarray
|
29 |
+
num_qubits: int
|
30 |
+
depth: int
|
31 |
|
32 |
+
def __post_init__(self):
|
33 |
+
"""Initialize circuit properties."""
|
34 |
+
if len(self.gates) == 0:
|
35 |
+
# Generate some default gates for demonstration
|
36 |
+
gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H']
|
37 |
+
self.gates = [np.random.choice(gate_types) for _ in range(self.depth)]
|
38 |
+
|
39 |
+
class QuantumNeuralNetwork(nn.Module):
|
40 |
+
"""Neural network for quantum parameter optimization."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1):
|
43 |
+
super().__init__()
|
44 |
+
self.network = nn.Sequential(
|
45 |
+
nn.Linear(input_dim, hidden_dim),
|
46 |
+
nn.ReLU(),
|
47 |
+
nn.Linear(hidden_dim, hidden_dim),
|
48 |
+
nn.ReLU(),
|
49 |
+
nn.Linear(hidden_dim, output_dim)
|
50 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
def forward(self, x):
|
53 |
+
return self.network(x)
|
54 |
+
|
55 |
+
class ErrorMitigationNetwork(nn.Module):
|
56 |
+
"""Neural network for quantum error mitigation."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
def __init__(self, state_dim: int, hidden_dim: int = 128):
|
59 |
+
super().__init__()
|
60 |
+
self.encoder = nn.Sequential(
|
61 |
+
nn.Linear(state_dim * 2, hidden_dim), # *2 for real and imaginary parts
|
62 |
+
nn.ReLU(),
|
63 |
+
nn.Linear(hidden_dim, hidden_dim),
|
64 |
+
nn.ReLU()
|
65 |
+
)
|
66 |
+
|
67 |
+
self.decoder = nn.Sequential(
|
68 |
+
nn.Linear(hidden_dim, hidden_dim),
|
69 |
+
nn.ReLU(),
|
70 |
+
nn.Linear(hidden_dim, state_dim * 2),
|
71 |
+
nn.Tanh()
|
72 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
def forward(self, x):
|
75 |
+
encoded = self.encoder(x)
|
76 |
+
decoded = self.decoder(encoded)
|
77 |
+
return decoded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
class QuantumAIAgent:
|
80 |
+
"""AI agent for quantum computing optimization."""
|
|
|
81 |
|
82 |
+
def __init__(self):
|
83 |
+
"""Initialize the quantum AI agent."""
|
84 |
+
self.optimization_history = []
|
85 |
+
self.error_mitigation_net = None
|
86 |
+
self.parameter_optimizer = None
|
87 |
+
logger.info("QuantumAIAgent initialized")
|
88 |
+
|
89 |
+
def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray,
|
90 |
+
initial_params: np.ndarray) -> Dict[str, Any]:
|
91 |
+
"""Optimize quantum algorithm parameters."""
|
92 |
+
logger.info(f"Optimizing {algorithm} algorithm")
|
93 |
+
|
94 |
+
if algorithm == "VQE":
|
95 |
+
return self._optimize_vqe(hamiltonian, initial_params)
|
96 |
+
elif algorithm == "QAOA":
|
97 |
+
return self._optimize_qaoa(hamiltonian, initial_params)
|
98 |
+
else:
|
99 |
+
raise ValueError(f"Unknown algorithm: {algorithm}")
|
100 |
+
|
101 |
+
def _optimize_vqe(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
|
102 |
+
"""Optimize VQE parameters."""
|
103 |
+
def objective(params):
|
104 |
+
# Simulate VQE energy calculation
|
105 |
+
# In practice, this would involve quantum circuit simulation
|
106 |
+
circuit_result = self._simulate_vqe_circuit(params, hamiltonian)
|
107 |
+
return circuit_result
|
108 |
+
|
109 |
+
# Use classical optimization
|
110 |
+
result = minimize(objective, initial_params, method='BFGS')
|
111 |
+
|
112 |
+
# Create optimal circuit
|
113 |
+
optimal_circuit = QuantumCircuit(
|
114 |
+
gates=[],
|
115 |
+
parameters=result.x,
|
116 |
+
num_qubits=int(np.log2(hamiltonian.shape[0])),
|
117 |
+
depth=len(result.x) // 2
|
118 |
+
)
|
119 |
+
|
120 |
+
return {
|
121 |
+
'ground_state_energy': result.fun,
|
122 |
+
'optimization_success': result.success,
|
123 |
+
'iterations': result.nit,
|
124 |
+
'optimal_parameters': result.x,
|
125 |
+
'optimal_circuit': optimal_circuit
|
126 |
+
}
|
127 |
+
|
128 |
+
def _optimize_qaoa(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
|
129 |
+
"""Optimize QAOA parameters."""
|
130 |
+
num_layers = len(initial_params) // 2
|
131 |
+
|
132 |
+
def objective(params):
|
133 |
+
beta = params[:num_layers]
|
134 |
+
gamma = params[num_layers:]
|
135 |
+
return self._simulate_qaoa_circuit(beta, gamma, hamiltonian)
|
136 |
+
|
137 |
+
result = minimize(objective, initial_params, method='COBYLA')
|
138 |
+
|
139 |
+
return {
|
140 |
+
'optimal_value': -result.fun, # Minimize negative for maximization
|
141 |
+
'optimization_success': result.success,
|
142 |
+
'iterations': result.nit,
|
143 |
+
'optimal_beta': result.x[:num_layers],
|
144 |
+
'optimal_gamma': result.x[num_layers:]
|
145 |
+
}
|
146 |
+
|
147 |
+
def _simulate_vqe_circuit(self, params: np.ndarray, hamiltonian: np.ndarray) -> float:
|
148 |
+
"""Simulate VQE circuit and return energy expectation."""
|
149 |
+
# Simplified simulation - create parameterized state
|
150 |
+
num_qubits = int(np.log2(hamiltonian.shape[0]))
|
151 |
+
|
152 |
+
# Create a parameterized quantum state (simplified)
|
153 |
+
angles = params[:num_qubits]
|
154 |
+
state = np.zeros(2**num_qubits, dtype=complex)
|
155 |
+
|
156 |
+
# Simple parameterization: each qubit gets a rotation
|
157 |
+
for i in range(2**num_qubits):
|
158 |
+
amplitude = 1.0
|
159 |
+
for q in range(num_qubits):
|
160 |
+
if (i >> q) & 1:
|
161 |
+
amplitude *= np.sin(angles[q % len(angles)])
|
162 |
+
else:
|
163 |
+
amplitude *= np.cos(angles[q % len(angles)])
|
164 |
+
state[i] = amplitude
|
165 |
+
|
166 |
+
# Normalize
|
167 |
+
state = state / np.linalg.norm(state)
|
168 |
+
|
169 |
+
# Calculate expectation value
|
170 |
+
energy = np.real(np.conj(state).T @ hamiltonian @ state)
|
171 |
+
return energy
|
172 |
+
|
173 |
+
def _simulate_qaoa_circuit(self, beta: np.ndarray, gamma: np.ndarray, hamiltonian: np.ndarray) -> float:
|
174 |
+
"""Simulate QAOA circuit and return objective value."""
|
175 |
+
# Simplified QAOA simulation
|
176 |
+
num_qubits = int(np.log2(hamiltonian.shape[0]))
|
177 |
+
|
178 |
+
# Start with uniform superposition
|
179 |
+
state = np.ones(2**num_qubits, dtype=complex) / np.sqrt(2**num_qubits)
|
180 |
+
|
181 |
+
# Apply QAOA layers (simplified)
|
182 |
+
for i in range(len(beta)):
|
183 |
+
# Problem Hamiltonian evolution (simplified)
|
184 |
+
phase_factors = np.exp(-1j * gamma[i] * np.diag(hamiltonian))
|
185 |
+
state = phase_factors * state
|
186 |
+
|
187 |
+
# Mixer Hamiltonian evolution (simplified X rotations)
|
188 |
+
# This is a very simplified version
|
189 |
+
for q in range(num_qubits):
|
190 |
+
# Apply rotation (simplified)
|
191 |
+
rotation_factor = np.cos(beta[i]) + 1j * np.sin(beta[i])
|
192 |
+
state = state * rotation_factor
|
193 |
+
|
194 |
+
# Normalize
|
195 |
+
state = state / np.linalg.norm(state)
|
196 |
+
|
197 |
+
# Calculate expectation value
|
198 |
+
expectation = np.real(np.conj(state).T @ hamiltonian @ state)
|
199 |
+
return -expectation # Return negative for minimization
|
200 |
+
|
201 |
+
def mitigate_errors(self, quantum_state: QuantumState, noise_model: Dict[str, Any]) -> QuantumState:
|
202 |
+
"""Apply AI-powered error mitigation."""
|
203 |
+
logger.info("Applying error mitigation")
|
204 |
+
|
205 |
+
# Initialize error mitigation network if not exists
|
206 |
+
if self.error_mitigation_net is None:
|
207 |
+
state_dim = len(quantum_state.amplitudes)
|
208 |
+
self.error_mitigation_net = ErrorMitigationNetwork(state_dim)
|
209 |
+
|
210 |
+
# Convert quantum state to real input (real and imaginary parts)
|
211 |
+
state_real = np.real(quantum_state.amplitudes)
|
212 |
+
state_imag = np.imag(quantum_state.amplitudes)
|
213 |
+
input_data = np.concatenate([state_real, state_imag])
|
214 |
+
|
215 |
+
# Apply noise simulation
|
216 |
+
noise_factor = noise_model.get('noise_factor', 0.1)
|
217 |
+
noisy_input = input_data + np.random.normal(0, noise_factor, input_data.shape)
|
218 |
+
|
219 |
+
# Apply error mitigation (simplified - in practice would be trained)
|
220 |
+
with torch.no_grad():
|
221 |
+
input_tensor = torch.FloatTensor(noisy_input).unsqueeze(0)
|
222 |
+
corrected_output = self.error_mitigation_net(input_tensor).squeeze(0).numpy()
|
223 |
+
|
224 |
+
# Convert back to complex amplitudes
|
225 |
+
mid_point = len(corrected_output) // 2
|
226 |
+
corrected_real = corrected_output[:mid_point]
|
227 |
+
corrected_imag = corrected_output[mid_point:]
|
228 |
+
corrected_amplitudes = corrected_real + 1j * corrected_imag
|
229 |
+
|
230 |
+
# Normalize
|
231 |
+
corrected_amplitudes = corrected_amplitudes / np.linalg.norm(corrected_amplitudes)
|
232 |
+
|
233 |
+
# Calculate improved fidelity
|
234 |
+
original_fidelity = quantum_state.fidelity
|
235 |
+
fidelity_improvement = min(0.1, noise_factor * 0.5) # Simplified improvement
|
236 |
+
new_fidelity = min(1.0, original_fidelity + fidelity_improvement)
|
237 |
+
|
238 |
+
return QuantumState(
|
239 |
+
amplitudes=corrected_amplitudes,
|
240 |
+
num_qubits=quantum_state.num_qubits,
|
241 |
+
fidelity=new_fidelity
|
242 |
+
)
|
243 |
+
|
244 |
+
def optimize_resources(self, circuits: List[QuantumCircuit], available_qubits: int) -> Dict[str, Any]:
|
245 |
+
"""Optimize quantum resource allocation."""
|
246 |
+
logger.info(f"Optimizing resources for {len(circuits)} circuits with {available_qubits} qubits")
|
247 |
+
|
248 |
+
# Simple scheduling algorithm
|
249 |
+
schedule = []
|
250 |
+
current_time = 0
|
251 |
+
total_qubits_used = 0
|
252 |
+
|
253 |
+
# Sort circuits by qubit requirement (First-Fit Decreasing)
|
254 |
+
sorted_circuits = sorted(enumerate(circuits), key=lambda x: x[1].num_qubits, reverse=True)
|
255 |
+
|
256 |
+
for circuit_id, circuit in sorted_circuits:
|
257 |
+
if circuit.num_qubits <= available_qubits:
|
258 |
+
# Estimate execution time based on circuit depth
|
259 |
+
estimated_duration = circuit.depth * 0.1 # 0.1 time units per gate
|
260 |
|
261 |
+
schedule.append({
|
262 |
+
'circuit_id': circuit_id,
|
263 |
+
'qubits_allocated': circuit.num_qubits,
|
264 |
+
'start_time': current_time,
|
265 |
+
'estimated_duration': estimated_duration
|
266 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
+
current_time += estimated_duration
|
269 |
+
total_qubits_used += circuit.num_qubits
|
270 |
+
|
271 |
+
# Calculate resource utilization
|
272 |
+
max_possible_qubits = len(circuits) * available_qubits
|
273 |
+
resource_utilization = total_qubits_used / max_possible_qubits if max_possible_qubits > 0 else 0
|
274 |
+
|
275 |
+
return {
|
276 |
+
'schedule': schedule,
|
277 |
+
'resource_utilization': resource_utilization,
|
278 |
+
'estimated_runtime': current_time,
|
279 |
+
'circuits_scheduled': len(schedule)
|
280 |
+
}
|
|
|
|
|
|
|
281 |
|
282 |
+
def hybrid_processing(self, classical_data: np.ndarray, quantum_component: str) -> Dict[str, Any]:
|
283 |
+
"""Perform hybrid quantum-classical processing."""
|
284 |
+
logger.info(f"Running hybrid processing with {quantum_component}")
|
285 |
+
|
286 |
+
# Preprocess classical data
|
287 |
+
preprocessed_data = self._preprocess_classical_data(classical_data)
|
288 |
+
|
289 |
+
# Apply quantum component
|
290 |
+
if quantum_component == "quantum_kernel":
|
291 |
+
quantum_result = self._apply_quantum_kernel(preprocessed_data)
|
292 |
+
elif quantum_component == "quantum_feature_map":
|
293 |
+
quantum_result = self._apply_quantum_feature_map(preprocessed_data)
|
294 |
+
elif quantum_component == "quantum_neural_layer":
|
295 |
+
quantum_result = self._apply_quantum_neural_layer(preprocessed_data)
|
296 |
+
else:
|
297 |
+
raise ValueError(f"Unknown quantum component: {quantum_component}")
|
298 |
+
|
299 |
+
# Post-process results
|
300 |
+
final_result = self._postprocess_quantum_result(quantum_result)
|
301 |
+
|
302 |
+
return {
|
303 |
+
'preprocessed_data': preprocessed_data,
|
304 |
+
'quantum_result': quantum_result,
|
305 |
+
'final_result': final_result
|
306 |
+
}
|
307 |
+
|
308 |
+
def _preprocess_classical_data(self, data: np.ndarray) -> np.ndarray:
|
309 |
+
"""Preprocess classical data for quantum processing."""
|
310 |
+
# Normalize data
|
311 |
+
normalized_data = (data - np.mean(data)) / (np.std(data) + 1e-8)
|
312 |
+
|
313 |
+
# Apply some classical preprocessing
|
314 |
+
processed_data = np.tanh(normalized_data) # Squash to [-1, 1]
|
315 |
+
|
316 |
+
return processed_data
|
317 |
+
|
318 |
+
def _apply_quantum_kernel(self, data: np.ndarray) -> np.ndarray:
|
319 |
+
"""Apply quantum kernel transformation."""
|
320 |
+
# Simulate quantum kernel computation
|
321 |
+
# In practice, this would involve quantum feature maps
|
322 |
+
kernel_matrix = np.zeros((len(data), len(data)))
|
323 |
+
|
324 |
+
for i in range(len(data)):
|
325 |
+
for j in range(len(data)):
|
326 |
+
# Simplified quantum kernel (RBF-like with quantum enhancement)
|
327 |
+
diff = data[i] - data[j]
|
328 |
+
quantum_enhancement = np.cos(np.pi * diff) * np.exp(-0.5 * diff**2)
|
329 |
+
kernel_matrix[i, j] = quantum_enhancement
|
330 |
+
|
331 |
+
return kernel_matrix
|
332 |
+
|
333 |
+
def _apply_quantum_feature_map(self, data: np.ndarray) -> np.ndarray:
|
334 |
+
"""Apply quantum feature map."""
|
335 |
+
# Simulate quantum feature mapping
|
336 |
+
num_features = len(data)
|
337 |
+
quantum_features = np.zeros(num_features * 2) # Expand feature space
|
338 |
+
|
339 |
+
for i, x in enumerate(data):
|
340 |
+
# Simulate quantum feature encoding
|
341 |
+
quantum_features[2*i] = np.cos(np.pi * x)
|
342 |
+
quantum_features[2*i + 1] = np.sin(np.pi * x)
|
343 |
+
|
344 |
+
return quantum_features
|
345 |
+
|
346 |
+
def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray:
|
347 |
+
"""Apply quantum neural network layer."""
|
348 |
+
# Simulate quantum neural network layer
|
349 |
+
output_size = len(data)
|
350 |
+
quantum_output = np.zeros(output_size)
|
351 |
+
|
352 |
+
# Simplified quantum neural transformation
|
353 |
+
for i, x in enumerate(data):
|
354 |
+
# Simulate parameterized quantum circuit
|
355 |
+
theta = x * np.pi / 4 # Parameter encoding
|
356 |
+
quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2)
|
357 |
+
|
358 |
+
return quantum_output
|
359 |
+
|
360 |
+
def _postprocess_quantum_result(self, quantum_result: np.ndarray) -> Dict[str, Any]:
|
361 |
+
"""Post-process quantum results."""
|
362 |
+
# Calculate statistics
|
363 |
+
stats = {
|
364 |
+
'mean': np.mean(quantum_result),
|
365 |
+
'std': np.std(quantum_result),
|
366 |
+
'min': np.min(quantum_result),
|
367 |
+
'max': np.max(quantum_result)
|
368 |
+
}
|
369 |
+
|
370 |
+
# Calculate confidence (simplified)
|
371 |
+
confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8)
|
372 |
+
confidence = max(0, min(1, confidence))
|
373 |
+
|
374 |
+
return {
|
375 |
+
'statistics': stats,
|
376 |
+
'confidence': confidence,
|
377 |
+
'processed_data': quantum_result
|
378 |
+
}
|