Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import librosa
|
4 |
+
import soundfile as sf
|
5 |
+
import os
|
6 |
+
import tempfile
|
7 |
+
from pathlib import Path
|
8 |
+
import torch
|
9 |
+
from tqdm import tqdm
|
10 |
+
import base64
|
11 |
+
import io
|
12 |
+
from PIL import Image
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
|
15 |
+
# Page configuration
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="Music Stem Splitter",
|
18 |
+
page_icon="🎵",
|
19 |
+
layout="wide",
|
20 |
+
initial_sidebar_state="expanded"
|
21 |
+
)
|
22 |
+
|
23 |
+
# Set maximum audio duration (in seconds) and file size (in MB)
|
24 |
+
MAX_AUDIO_DURATION = 300 # 5 minutes
|
25 |
+
MAX_FILE_SIZE_MB = 100
|
26 |
+
|
27 |
+
# Load pretrained separator model
|
28 |
+
@st.cache_resource
|
29 |
+
def load_separator_model():
|
30 |
+
try:
|
31 |
+
# Import here to avoid loading until needed
|
32 |
+
from demucs.pretrained import get_model
|
33 |
+
model = get_model('htdemucs')
|
34 |
+
model.eval()
|
35 |
+
if torch.cuda.is_available():
|
36 |
+
model.cuda()
|
37 |
+
return model
|
38 |
+
except ImportError:
|
39 |
+
st.error("Required package 'demucs' not found. Please install it with 'pip install demucs'.")
|
40 |
+
return None
|
41 |
+
|
42 |
+
# Function to check audio length
|
43 |
+
def check_audio_length(audio_path):
|
44 |
+
try:
|
45 |
+
duration = librosa.get_duration(path=audio_path)
|
46 |
+
return duration
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"Could not determine audio length: {str(e)}")
|
49 |
+
return MAX_AUDIO_DURATION + 1 # Return a value that will fail the check
|
50 |
+
|
51 |
+
# Function to separate stems from an audio file
|
52 |
+
def separate_stems(audio_path, model, sample_rate=44100):
|
53 |
+
from demucs.apply import apply_model
|
54 |
+
import torchaudio
|
55 |
+
|
56 |
+
# Load audio with potential resampling to save memory
|
57 |
+
waveform, original_sample_rate = torchaudio.load(audio_path)
|
58 |
+
|
59 |
+
# Resample if needed to optimize memory usage
|
60 |
+
if original_sample_rate > sample_rate:
|
61 |
+
resampler = torchaudio.transforms.Resample(orig_freq=original_sample_rate, new_freq=sample_rate)
|
62 |
+
waveform = resampler(waveform)
|
63 |
+
st.info(f"Audio resampled from {original_sample_rate}Hz to {sample_rate}Hz to optimize performance.")
|
64 |
+
else:
|
65 |
+
sample_rate = original_sample_rate
|
66 |
+
|
67 |
+
# Create a mono version just for visualization
|
68 |
+
if waveform.shape[0] > 1:
|
69 |
+
waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
|
70 |
+
else:
|
71 |
+
waveform_mono = waveform
|
72 |
+
|
73 |
+
# Get the audio length in seconds for progress tracking
|
74 |
+
audio_length = waveform.shape[1] / sample_rate
|
75 |
+
|
76 |
+
# Create a progress bar
|
77 |
+
progress_bar = st.progress(0)
|
78 |
+
status_text = st.empty()
|
79 |
+
|
80 |
+
# Prepare the model input
|
81 |
+
if torch.cuda.is_available():
|
82 |
+
waveform = waveform.cuda()
|
83 |
+
|
84 |
+
# For Demucs, we need the audio as (batch, channels, time)
|
85 |
+
if waveform.dim() == 2: # (channels, time)
|
86 |
+
waveform = waveform.unsqueeze(0)
|
87 |
+
|
88 |
+
# Create a temp directory for saving stems
|
89 |
+
temp_dir = tempfile.mkdtemp()
|
90 |
+
stems = {}
|
91 |
+
|
92 |
+
# Process and separate stems
|
93 |
+
status_text.text("Separating stems... This may take a while depending on the audio length.")
|
94 |
+
|
95 |
+
# Optimize memory usage by processing in chunks if needed
|
96 |
+
with torch.no_grad():
|
97 |
+
# Use smaller chunks for CPU, larger for GPU
|
98 |
+
chunk_size = 10 * sample_rate if torch.cuda.is_available() else 5 * sample_rate
|
99 |
+
|
100 |
+
if waveform.shape[-1] > chunk_size and waveform.shape[-1] > 30 * sample_rate:
|
101 |
+
# Process in chunks for very long audio
|
102 |
+
st.info("Processing long audio in chunks to optimize memory usage...")
|
103 |
+
sources = []
|
104 |
+
|
105 |
+
# Calculate number of chunks
|
106 |
+
num_chunks = int(np.ceil(waveform.shape[-1] / chunk_size))
|
107 |
+
|
108 |
+
for i in range(num_chunks):
|
109 |
+
# Update progress
|
110 |
+
progress = i / num_chunks * 0.7 # 70% of progress for separation
|
111 |
+
progress_bar.progress(progress)
|
112 |
+
status_text.text(f"Processing chunk {i+1}/{num_chunks}...")
|
113 |
+
|
114 |
+
# Extract chunk
|
115 |
+
start = i * chunk_size
|
116 |
+
end = min(start + chunk_size, waveform.shape[-1])
|
117 |
+
chunk = waveform[:, :, start:end]
|
118 |
+
|
119 |
+
# Process chunk
|
120 |
+
chunk_sources = apply_model(model, chunk, device="cuda" if torch.cuda.is_available() else "cpu")
|
121 |
+
|
122 |
+
# Append to sources
|
123 |
+
if i == 0:
|
124 |
+
sources = chunk_sources
|
125 |
+
else:
|
126 |
+
# Concatenate along time dimension
|
127 |
+
sources = torch.cat([sources, chunk_sources], dim=-1)
|
128 |
+
|
129 |
+
# Clear GPU memory if needed
|
130 |
+
if torch.cuda.is_available():
|
131 |
+
torch.cuda.empty_cache()
|
132 |
+
else:
|
133 |
+
# Process entire audio at once for shorter clips
|
134 |
+
sources = apply_model(model, waveform, device="cuda" if torch.cuda.is_available() else "cpu")
|
135 |
+
|
136 |
+
# sources is (batch, source, channels, time)
|
137 |
+
sources = sources[0] # Remove batch dimension
|
138 |
+
|
139 |
+
# Save each source
|
140 |
+
source_names = ["drums", "bass", "other", "vocals"]
|
141 |
+
for i, source_name in enumerate(source_names):
|
142 |
+
stems[source_name] = sources[i].cpu().numpy()
|
143 |
+
|
144 |
+
# Update progress
|
145 |
+
progress = 0.7 + (i + 1) / len(source_names) * 0.2 # 20% of progress for stem saving
|
146 |
+
progress_bar.progress(progress)
|
147 |
+
status_text.text(f"Processed {source_name} stem ({i+1}/{len(source_names)})")
|
148 |
+
|
149 |
+
# Create visualizations (at reduced resolution to save memory)
|
150 |
+
visualizations = {}
|
151 |
+
for stem_name, audio_data in stems.items():
|
152 |
+
# Create spectrogram visualization
|
153 |
+
plt.figure(figsize=(10, 4))
|
154 |
+
|
155 |
+
# Use a smaller portion of audio for visualization if it's too long
|
156 |
+
max_samples = min(sample_rate * 30, audio_data.shape[1]) # 30 seconds max
|
157 |
+
visualization_data = audio_data[0, :max_samples] if audio_data.shape[1] > max_samples else audio_data[0]
|
158 |
+
|
159 |
+
# Create spectrogram with reduced resolution
|
160 |
+
D = librosa.amplitude_to_db(np.abs(librosa.stft(visualization_data, n_fft=1024, hop_length=512)), ref=np.max)
|
161 |
+
|
162 |
+
plt.subplot(1, 1, 1)
|
163 |
+
librosa.display.specshow(D, y_axis='log', x_axis='time', sr=sample_rate)
|
164 |
+
plt.title(f'{stem_name.capitalize()} Spectrogram')
|
165 |
+
plt.colorbar(format='%+2.0f dB')
|
166 |
+
plt.tight_layout()
|
167 |
+
|
168 |
+
# Save figure to bytes
|
169 |
+
buf = io.BytesIO()
|
170 |
+
plt.savefig(buf, format='png', dpi=100) # Lower DPI to save memory
|
171 |
+
buf.seek(0)
|
172 |
+
visualizations[stem_name] = buf
|
173 |
+
plt.close()
|
174 |
+
|
175 |
+
# Clear GPU memory
|
176 |
+
if torch.cuda.is_available():
|
177 |
+
torch.cuda.empty_cache()
|
178 |
+
|
179 |
+
# Update progress to complete
|
180 |
+
progress_bar.progress(1.0)
|
181 |
+
status_text.text("Stem separation complete!")
|
182 |
+
|
183 |
+
return stems, sample_rate, visualizations
|
184 |
+
|
185 |
+
# Function to create a download link for audio files
|
186 |
+
def get_binary_file_downloader_html(bin_data, file_label, file_extension):
|
187 |
+
b64data = base64.b64encode(bin_data).decode()
|
188 |
+
href = f'<a href="data:audio/{file_extension};base64,{b64data}" download="{file_label}.{file_extension}">Download {file_label}</a>'
|
189 |
+
return href
|
190 |
+
|
191 |
+
# Title and description
|
192 |
+
st.title("🎵 Music Stem Splitter")
|
193 |
+
|
194 |
+
st.markdown("""
|
195 |
+
This application separates music tracks into individual stems:
|
196 |
+
- **Vocals**: Lead and background vocals
|
197 |
+
- **Drums**: Drum kit and percussion
|
198 |
+
- **Bass**: Bass guitar, synth bass, etc.
|
199 |
+
- **Other**: All other instruments and sounds
|
200 |
+
|
201 |
+
Upload an audio file (MP3, WAV, or FLAC) to get started.
|
202 |
+
""")
|
203 |
+
|
204 |
+
# Add warning about HF Spaces limitations
|
205 |
+
st.warning(f"""
|
206 |
+
⚠️ **Hugging Face Spaces Limitations**:
|
207 |
+
- Maximum file size: {MAX_FILE_SIZE_MB}MB
|
208 |
+
- Maximum audio duration: {MAX_AUDIO_DURATION} seconds ({MAX_AUDIO_DURATION//60} minutes)
|
209 |
+
- Processing may take several minutes depending on server load
|
210 |
+
""")
|
211 |
+
|
212 |
+
# Initialize session state for storing results
|
213 |
+
if 'stems' not in st.session_state:
|
214 |
+
st.session_state.stems = None
|
215 |
+
if 'sample_rate' not in st.session_state:
|
216 |
+
st.session_state.sample_rate = None
|
217 |
+
if 'visualizations' not in st.session_state:
|
218 |
+
st.session_state.visualizations = None
|
219 |
+
|
220 |
+
# File uploader
|
221 |
+
st.subheader("Upload Audio File")
|
222 |
+
uploaded_file = st.file_uploader("Choose an audio file", type=["mp3", "wav", "flac", "ogg"])
|
223 |
+
|
224 |
+
# Model loading (only when needed)
|
225 |
+
model_load_state = st.empty()
|
226 |
+
|
227 |
+
# Process the uploaded file
|
228 |
+
if uploaded_file is not None:
|
229 |
+
# Check file size
|
230 |
+
file_size_mb = uploaded_file.size / 1e6
|
231 |
+
|
232 |
+
if file_size_mb > MAX_FILE_SIZE_MB:
|
233 |
+
st.error(f"File too large: {file_size_mb:.1f}MB. Maximum allowed size is {MAX_FILE_SIZE_MB}MB.")
|
234 |
+
else:
|
235 |
+
# Display file info
|
236 |
+
file_details = {"Filename": uploaded_file.name, "FileSize": f"{file_size_mb:.2f} MB"}
|
237 |
+
st.write(file_details)
|
238 |
+
|
239 |
+
# Create a temporary file
|
240 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
|
241 |
+
tmp_file.write(uploaded_file.getvalue())
|
242 |
+
tmp_path = tmp_file.name
|
243 |
+
|
244 |
+
# Check audio duration
|
245 |
+
audio_duration = check_audio_length(tmp_path)
|
246 |
+
|
247 |
+
if audio_duration > MAX_AUDIO_DURATION:
|
248 |
+
st.error(f"Audio duration too long: {audio_duration:.1f} seconds. Maximum allowed duration is {MAX_AUDIO_DURATION} seconds ({MAX_AUDIO_DURATION//60} minutes).")
|
249 |
+
# Clean up temporary file
|
250 |
+
os.unlink(tmp_path)
|
251 |
+
else:
|
252 |
+
st.info(f"Audio duration: {audio_duration:.1f} seconds")
|
253 |
+
|
254 |
+
# Load model (with caching for efficiency)
|
255 |
+
with model_load_state:
|
256 |
+
st.info("Loading AI model... This may take a moment the first time.")
|
257 |
+
model = load_separator_model()
|
258 |
+
|
259 |
+
if model is not None:
|
260 |
+
# Process button
|
261 |
+
if st.button("Split into Stems"):
|
262 |
+
try:
|
263 |
+
# Select processing sample rate based on file duration
|
264 |
+
# Shorter files can use higher quality, longer files use lower to save memory
|
265 |
+
if audio_duration < 60: # Less than 1 minute
|
266 |
+
processing_sample_rate = 44100
|
267 |
+
elif audio_duration < 180: # 1-3 minutes
|
268 |
+
processing_sample_rate = 32000
|
269 |
+
else: # 3-5 minutes
|
270 |
+
processing_sample_rate = 22050
|
271 |
+
|
272 |
+
# Perform stem separation
|
273 |
+
st.session_state.stems, st.session_state.sample_rate, st.session_state.visualizations = separate_stems(
|
274 |
+
tmp_path, model, sample_rate=processing_sample_rate
|
275 |
+
)
|
276 |
+
st.success("Stem separation completed! Scroll down to preview and download individual stems.")
|
277 |
+
except Exception as e:
|
278 |
+
st.error(f"An error occurred during processing: {str(e)}")
|
279 |
+
st.info("Try with a shorter audio clip or a different file format.")
|
280 |
+
else:
|
281 |
+
st.warning("Required packages not available. To run locally, install with 'pip install demucs librosa soundfile'")
|
282 |
+
|
283 |
+
# Clean up temporary file
|
284 |
+
os.unlink(tmp_path)
|
285 |
+
|
286 |
+
# Display results if available
|
287 |
+
if st.session_state.stems is not None:
|
288 |
+
st.header("Separated Stems")
|
289 |
+
|
290 |
+
# Create tabs for each stem
|
291 |
+
stem_tabs = st.tabs(["Vocals", "Drums", "Bass", "Other"])
|
292 |
+
|
293 |
+
# Get stem names in correct order
|
294 |
+
stem_names = ["vocals", "drums", "bass", "other"]
|
295 |
+
|
296 |
+
# Process each stem
|
297 |
+
for i, (stem_tab, stem_name) in enumerate(zip(stem_tabs, stem_names)):
|
298 |
+
with stem_tab:
|
299 |
+
# Create columns for audio player and visualization
|
300 |
+
col1, col2 = st.columns([1, 1])
|
301 |
+
|
302 |
+
with col1:
|
303 |
+
st.subheader(f"{stem_name.capitalize()} Stem")
|
304 |
+
|
305 |
+
# Convert numpy array to audio file for playback
|
306 |
+
audio_data = st.session_state.stems[stem_name]
|
307 |
+
|
308 |
+
# Create a temporary buffer for the audio data
|
309 |
+
buf = io.BytesIO()
|
310 |
+
sf.write(buf, audio_data.T, st.session_state.sample_rate, format='WAV')
|
311 |
+
buf.seek(0)
|
312 |
+
|
313 |
+
# Display audio player
|
314 |
+
st.audio(buf, format='audio/wav')
|
315 |
+
|
316 |
+
# Download button
|
317 |
+
st.markdown(get_binary_file_downloader_html(buf.getvalue(), f"{stem_name}", "wav"), unsafe_allow_html=True)
|
318 |
+
|
319 |
+
# Additional information
|
320 |
+
if stem_name == "vocals":
|
321 |
+
st.info("Contains lead vocals and backing vocals.")
|
322 |
+
elif stem_name == "drums":
|
323 |
+
st.info("Contains drums and percussion elements.")
|
324 |
+
elif stem_name == "bass":
|
325 |
+
st.info("Contains bass guitar and low-frequency elements.")
|
326 |
+
else: # other
|
327 |
+
st.info("Contains all other instruments (guitars, keys, synths, etc).")
|
328 |
+
|
329 |
+
with col2:
|
330 |
+
# Display visualization
|
331 |
+
if st.session_state.visualizations and stem_name in st.session_state.visualizations:
|
332 |
+
st.image(st.session_state.visualizations[stem_name], caption=f"{stem_name.capitalize()} Spectrogram")
|
333 |
+
|
334 |
+
# Show instructions for downloading all stems
|
335 |
+
st.header("Usage Tips")
|
336 |
+
st.markdown("""
|
337 |
+
### What can you do with these stems?
|
338 |
+
- Create remixes or mashups
|
339 |
+
- Practice playing along with isolated instrument tracks
|
340 |
+
- Create karaoke versions by removing vocals
|
341 |
+
- Analyze individual instrument parts for educational purposes
|
342 |
+
|
343 |
+
### Next steps:
|
344 |
+
1. Download each stem you want to use
|
345 |
+
2. Import them into your DAW (Digital Audio Workstation)
|
346 |
+
3. Mix, process, and create!
|
347 |
+
""")
|
348 |
+
|
349 |
+
# Add instructions for local deployment
|
350 |
+
st.sidebar.header("About This App")
|
351 |
+
st.sidebar.markdown("""
|
352 |
+
This application uses the Demucs model to separate audio tracks into individual stems. The model was developed by Facebook AI Research.
|
353 |
+
|
354 |
+
### How it works
|
355 |
+
The separation process uses a deep neural network to identify and isolate:
|
356 |
+
- Vocals
|
357 |
+
- Drums
|
358 |
+
- Bass
|
359 |
+
- Other instruments
|
360 |
+
|
361 |
+
### Source code
|
362 |
+
[GitHub Repository](https://github.com/huggingface/music-stem-splitter)
|
363 |
+
(Link to your repo once created)
|
364 |
+
""")
|
365 |
+
|
366 |
+
# Add a note about processing time
|
367 |
+
st.sidebar.markdown("""
|
368 |
+
### Processing Time
|
369 |
+
The processing time depends on:
|
370 |
+
- Length of the audio file
|
371 |
+
- Available computational resources
|
372 |
+
- File quality
|
373 |
+
|
374 |
+
For best results, use high-quality audio files without excessive background noise.
|
375 |
+
""")
|
376 |
+
|
377 |
+
# Show model information
|
378 |
+
st.sidebar.markdown("""
|
379 |
+
### Model Information
|
380 |
+
This app uses the HTDemucs model, which is trained to separate music into four stems.
|
381 |
+
|
382 |
+
Audio processing is optimized based on file length:
|
383 |
+
- Short files (< 1 min): 44.1kHz processing
|
384 |
+
- Medium files (1-3 min): 32kHz processing
|
385 |
+
- Longer files (3-5 min): 22kHz processing
|
386 |
+
""")
|