CCockrum commited on
Commit
a281b7d
·
verified ·
1 Parent(s): 203c72c

Update mdx_core.py

Browse files
Files changed (1) hide show
  1. mdx_core.py +138 -0
mdx_core.py CHANGED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mdx_core.py
2
+
3
+ import torch
4
+ import numpy as np
5
+ import onnxruntime as ort
6
+ import hashlib
7
+ import queue
8
+ import threading
9
+ from tqdm import tqdm
10
+
11
+
12
+ class MDXModel:
13
+ def __init__(self, device, dim_f, dim_t, n_fft, hop=1024, stem_name=None, compensation=1.000):
14
+ self.dim_f = dim_f
15
+ self.dim_t = dim_t
16
+ self.dim_c = 4
17
+ self.n_fft = n_fft
18
+ self.hop = hop
19
+ self.stem_name = stem_name
20
+ self.compensation = compensation
21
+
22
+ self.n_bins = self.n_fft // 2 + 1
23
+ self.chunk_size = hop * (self.dim_t - 1)
24
+ self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
25
+
26
+ self.freq_pad = torch.zeros([1, self.dim_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
27
+
28
+ def stft(self, x):
29
+ x = x.reshape([-1, self.chunk_size])
30
+ x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window,
31
+ center=True, return_complex=True)
32
+ x = torch.view_as_real(x)
33
+ x = x.permute([0, 3, 1, 2])
34
+ x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 4, self.n_bins, self.dim_t])
35
+ return x[:, :, :self.dim_f]
36
+
37
+ def istft(self, x, freq_pad=None):
38
+ freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
39
+ x = torch.cat([x, freq_pad], -2)
40
+ x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
41
+ x = x.permute([0, 2, 3, 1]).contiguous()
42
+ x = torch.view_as_complex(x)
43
+ x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
44
+ return x.reshape([-1, 2, self.chunk_size])
45
+
46
+
47
+ class MDX:
48
+ DEFAULT_SR = 44100
49
+ DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
50
+ DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR
51
+
52
+ def __init__(self, model_path: str, params: MDXModel, processor=0):
53
+ self.device = torch.device(f"cuda:{processor}" if processor >= 0 else "cpu")
54
+ self.provider = ["CUDAExecutionProvider"] if processor >= 0 else ["CPUExecutionProvider"]
55
+ self.model = params
56
+ self.ort = ort.InferenceSession(model_path, providers=self.provider)
57
+ self.ort.run(None, {"input": torch.rand(1, 4, params.dim_f, params.dim_t).numpy()})
58
+ self.process = lambda spec: self.ort.run(None, {"input": spec.cpu().numpy()})[0]
59
+ self.prog = None
60
+
61
+ @staticmethod
62
+ def get_hash(model_path):
63
+ try:
64
+ with open(model_path, "rb") as f:
65
+ f.seek(-10000 * 1024, 2)
66
+ return hashlib.md5(f.read()).hexdigest()
67
+ except:
68
+ return hashlib.md5(open(model_path, "rb").read()).hexdigest()
69
+
70
+ @staticmethod
71
+ def segment(wave, combine=True, chunk_size=DEFAULT_CHUNK_SIZE, margin_size=DEFAULT_MARGIN_SIZE):
72
+ if combine:
73
+ processed_wave = None
74
+ for segment_count, segment in enumerate(wave):
75
+ start = 0 if segment_count == 0 else margin_size
76
+ end = None if segment_count == len(wave) - 1 else -margin_size
77
+ if margin_size == 0:
78
+ end = None
79
+ part = segment[:, start:end]
80
+ processed_wave = part if processed_wave is None else np.concatenate((processed_wave, part), axis=-1)
81
+ else:
82
+ processed_wave = []
83
+ sample_count = wave.shape[-1]
84
+ if chunk_size <= 0 or chunk_size > sample_count:
85
+ chunk_size = sample_count
86
+ if margin_size > chunk_size:
87
+ margin_size = chunk_size
88
+ for segment_count, skip in enumerate(range(0, sample_count, chunk_size)):
89
+ margin = 0 if segment_count == 0 else margin_size
90
+ end = min(skip + chunk_size + margin_size, sample_count)
91
+ start = skip - margin
92
+ processed_wave.append(wave[:, start:end].copy())
93
+ if end == sample_count:
94
+ break
95
+ return processed_wave
96
+
97
+ def pad_wave(self, wave):
98
+ n_sample = wave.shape[1]
99
+ trim = self.model.n_fft // 2
100
+ gen_size = self.model.chunk_size - 2 * trim
101
+ pad = gen_size - n_sample % gen_size
102
+
103
+ wave_p = np.concatenate((np.zeros((2, trim)), wave, np.zeros((2, pad)), np.zeros((2, trim))), 1)
104
+ mix_waves = [torch.tensor(wave_p[:, i:i + self.model.chunk_size], dtype=torch.float32).to(self.device)
105
+ for i in range(0, n_sample + pad, gen_size)]
106
+ return torch.stack(mix_waves), pad, trim
107
+
108
+ def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int):
109
+ mix_waves = mix_waves.split(1)
110
+ with torch.no_grad():
111
+ pw = []
112
+ for mix_wave in mix_waves:
113
+ self.prog.update()
114
+ spec = self.model.stft(mix_wave)
115
+ processed_spec = torch.tensor(self.process(spec))
116
+ processed_wav = self.model.istft(processed_spec.to(self.device))
117
+ result = processed_wav[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).cpu().numpy()
118
+ pw.append(result)
119
+ q.put({_id: np.concatenate(pw, axis=-1)[:, :-pad]})
120
+
121
+ def process_wave(self, wave: np.array, mt_threads=1):
122
+ self.prog = tqdm(total=0)
123
+ chunk = wave.shape[-1] // mt_threads
124
+ waves = self.segment(wave, False, chunk)
125
+ q = queue.Queue()
126
+ threads = []
127
+ for c, batch in enumerate(waves):
128
+ mix_waves, pad, trim = self.pad_wave(batch)
129
+ self.prog.total = len(mix_waves) * mt_threads
130
+ thread = threading.Thread(target=self._process_wave, args=(mix_waves, trim, pad, q, c))
131
+ thread.start()
132
+ threads.append(thread)
133
+ for thread in threads:
134
+ thread.join()
135
+ self.prog.close()
136
+ processed_batches = [q.get() for _ in range(len(waves))]
137
+ processed_batches.sort(key=lambda d: list(d.keys())[0])
138
+ return self.segment([list(wave.values())[0] for wave in processed_batches], True, chunk)