File size: 7,947 Bytes
b10792b
 
328456e
 
b10792b
1d4c573
 
 
 
 
 
b10792b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d4c573
328456e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d4c573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328456e
1d4c573
 
328456e
1d4c573
 
328456e
1d4c573
 
328456e
 
 
 
 
 
 
1d4c573
328456e
 
1d4c573
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import pymupdf
import tiktoken
import markdown
import re

from io import BytesIO
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.enums import TA_CENTER
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage

def count_tokens(input_string: str) -> int:
    tokenizer = tiktoken.get_encoding("cl100k_base")
    tokens = tokenizer.encode(input_string)
    return len(tokens)


def audit_descriptif_pdf(file,max_img_width=500) -> dict:
    document = pymupdf.open(stream=file.read())

    audit_dict_doc = {
        "number_of_pages": len(document),
        "number_of_images": 0,
        "number_of_links": 0,
        "number_of_tables": 0,
        "number_of_tokens": 0,
        "number_of_words": 0,
        "key_words": []
    }

    doc_content = dict()

    for page in document:

        audit_dict_page = {}
        page_content = {
            "images": [],
            "texte": "",
            "liens": [],
            "tableaux": []
        }

        #number of images
        images = page.get_images()
        number_images = len(images)
        audit_dict_page["number_of_images"] = number_images
        audit_dict_doc["number_of_images"] += number_images
        
        #get images
        for _, img in enumerate(images):
            xref = img[0]
            base_image = document.extract_image(xref)

            image_bytes = base_image["image"]
            image_width = base_image["width"]
            image_height = base_image["height"]
            
            # Adjust image size if it exceeds the maximum width
            if image_width > max_img_width:
                ratio = max_img_width / image_width
                image_width = max_img_width
                image_height = int(image_height * ratio)
            
            page_content["images"].append((image_bytes, image_width, image_height))


        
        #get links with uri
        links = []
        for link in page.get_links():
            if link['kind'] == pymupdf.LINK_URI and 'uri' in link:
                links.append({"uri": link["uri"], "page": page.number})
        
        page_content["liens"] = links

        #number of links
        number_links = len(links)
        audit_dict_page["number_of_links"] = number_links
        audit_dict_doc["number_of_links"] += number_links

        #number of tables
        tables = page.find_tables().tables
        number_tables = len(tables)
        for tab in tables:
            page_content["tableaux"].append(tab.to_pandas())
        audit_dict_page["number_of_tables"] = number_tables
        audit_dict_doc["number_of_tables"] += number_tables

        #number of tokens and words
        text = page.get_text("text")
        number_tokens = count_tokens(text)
        number_words = len(text.split())

        audit_dict_page["number_of_tokens"] = number_tokens
        audit_dict_page["number_of_words"] = number_words

        #get text
        page_content["texte"] = text

        audit_dict_doc["number_of_tokens"] += number_tokens
        audit_dict_doc["number_of_words"] += number_words

        audit_dict_doc[f"page_{page.number}"] = audit_dict_page

        doc_content[f"page_{page.number}"] = page_content
    

    
    #merge 2 dicts
    global_audit = {
        "audit": audit_dict_doc,
        "content": doc_content
    }

    return global_audit

# Fonction pour convertir le Markdown en HTML pour le PDF
def markdown_to_html(md_text):
    return markdown.markdown(md_text, output_format='html' )
    html = """
    <html>
        <head>
            <style>
                body { font-family: Arial, sans-serif; margin: 40px; }
                h1 { text-align: center; color: #333; }
                h2 { border-bottom: 2px solid #666; padding-bottom: 5px; margin-top: 30px; }
                .message { margin-bottom: 10px; padding: 10px; border-radius: 5px; }
                .human { background-color: #e1f5fe; }
                .ai { background-color: #e8f5e9; }
                .system { background-color: #ffebee; }
            </style>
        </head>
    <body>
        <h1>Conseiller augmenté CEGARA</h1>
    """

    # Trier les chapitres par "num"
    chapters = sorted(chapter_data, key=lambda x: x["num"])

    for chapter in chapters:
        html += f"<h2>Chapitre {chapter['num']}: {chapter['title']}</h2>"

        if len(chapter["messages"]) > 1 :
            # Affichage des messages
            for msg in chapter["messages"]:

                if  isinstance(msg, HumanMessage):
                    sender = "Utilisateur"
                    css_class = "human"
                elif isinstance(msg, AIMessage):
                    sender = "IA"
                    css_class = "ai"
                elif isinstance(msg, SystemMessage):
                    sender = "Système"
                    css_class = "system"
                else:
                    sender = "Message"
                    css_class = ""

                html += f"""
                <div class="message {css_class}">
                    <b>{sender} :</b> {markdown_to_html(msg.content)}
                </div>
                """

    html += "</body></html>"

    return generate_pdf_from_html(html)

# Fonction pour convertir le Markdown en texte enrichi compatible ReportLab
def markdown_to_reportlab(text):
    # text = text.replace("**", "<b>").replace("__", "<b>")  # Gras
    # text = text.replace("*", "<i>").replace("_", "<i>")    # Italique
    text = text.replace("\n", "<br/>")    # Italique
    # text = re.sub(r"\n- (.+)", r"\n• \1", text)  # Listes à puces
    # text = re.sub(r"^# (.+)", r"<b><font size='16'>\1</font></b>", text, flags=re.MULTILINE)  # Titre H1
    # text = re.sub(r"^## (.+)", r"<b><font size='14'>\1</font></b>", text, flags=re.MULTILINE)  # Titre H2
    # text = re.sub(r"^### (.+)", r"<b><font size='12'>\1</font></b>", text, flags=re.MULTILINE)  # Titre H3
    return text

def generate_pdf(chapter_data: list):
    buffer = BytesIO()
    doc = SimpleDocTemplate(buffer, pagesize=A4)

    styles = getSampleStyleSheet()
    style_title = styles["Title"]
    style_title.alignment = TA_CENTER  # Centrer le titre
    style_header = styles["Heading2"]
    style_message = styles["BodyText"]

    elements = []

    # Titre principal du document
    elements.append(Paragraph("Conseiller augmenté CEGARA", style_title))
    elements.append(Spacer(1, 20))  # Espacement après le titre

    # Trier les chapitres par "num"
    chapters = sorted(chapter_data, key=lambda x: x["num"])

    for chapter in chapters:
        # Ajouter le titre de la discussion
        elements.append(Paragraph(f"Chapitre {chapter['num']}: {chapter['title']}", style_header))
        elements.append(Spacer(1, 10))

        if len(chapter["messages"]) > 1 :
            for msg in chapter["messages"]:
                if isinstance(msg, HumanMessage):
                    color = "blue"
                    sender = "Utilisateur"
                elif isinstance(msg, AIMessage):
                    color = "green"
                    sender = "Conseiller augmenté CEGARA"
                elif isinstance(msg, SystemMessage):
                    color = "red"
                    sender = "Système"
                else:
                    color = "black"
                    sender = "Message"

                elements.append(Paragraph(f"<b><font color='{color}'>{sender}</font></b>", style_message))

                content = msg.content
                content = markdown_to_html(content)
                content = markdown_to_reportlab(content)

                elements.append(Paragraph(content, style_message))
                elements.append(Spacer(1, 10))

        elements.append(Spacer(1, 15))  # Espacement entre discussions

    doc.build(elements)
    buffer.seek(0)
    return buffer