LLMasJudgeEval / app.py
luanagbmartins's picture
filter by benchmark
3a55cb3
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
Tasks,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(
EVAL_RESULTS_PATH,
EVAL_REQUESTS_PATH,
COLS,
BENCHMARK_COLS,
)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=0.01,
# max=150,
# label="Select the number of parameters (B)",
# ),
# ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
],
# bool_checkboxgroup_label="Hide models",
interactive=False,
)
task_map = {getattr(Tasks, t).value.col_name: getattr(Tasks, t).name for t in dir(Tasks) if not t.startswith("_")}
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("[ENG] Position Bias Analyzer", elem_id="llm-benchmark-tab-table", id=0):
for filter in BENCHMARK_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = True
FILTERED_COLS = [c for c in BENCHMARK_COLS if not c.startswith("[ENG-P]")]
for filter in FILTERED_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = False
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("[PT] Position Bias Analyzer", elem_id="llm-benchmark-tab-table", id=1):
for filter in BENCHMARK_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = True
FILTERED_COLS = [c for c in BENCHMARK_COLS if not c.startswith("[PT-P]")]
for filter in FILTERED_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = False
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("[ENG] LLMBar Natural", elem_id="llm-benchmark-tab-table", id=2):
for filter in BENCHMARK_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = True
FILTERED_COLS = [c for c in BENCHMARK_COLS if not c.startswith("[ENG-N]")]
for filter in FILTERED_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = False
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("[PT] LLMBar Natural", elem_id="llm-benchmark-tab-table", id=3):
for filter in BENCHMARK_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = True
FILTERED_COLS = [c for c in BENCHMARK_COLS if not c.startswith("[PT-N]")]
for filter in FILTERED_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = False
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("[ENG] LLMBar Adversarial (Manual)", elem_id="llm-benchmark-tab-table", id=4):
for filter in BENCHMARK_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = True
FILTERED_COLS = [c for c in BENCHMARK_COLS if not c.startswith("[ENG-A]")]
for filter in FILTERED_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = False
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("[PT] LLMBar Adversarial (Manual)", elem_id="llm-benchmark-tab-table", id=5):
for filter in BENCHMARK_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = True
FILTERED_COLS = [c for c in BENCHMARK_COLS if not c.startswith("[PT-A]")]
for filter in FILTERED_COLS:
getattr(AutoEvalColumn, task_map[filter]).displayed_by_default = False
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=6):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# with gr.Column():
# with gr.Accordion(
# f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# finished_eval_table = gr.components.Dataframe(
# value=finished_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# running_eval_table = gr.components.Dataframe(
# value=running_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Accordion(
# f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# open=False,
# ):
# with gr.Row():
# pending_eval_table = gr.components.Dataframe(
# value=pending_eval_queue_df,
# headers=EVAL_COLS,
# datatype=EVAL_TYPES,
# row_count=5,
# )
# with gr.Row():
# gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox = gr.Textbox(label="Model name")
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
# model_type = gr.Dropdown(
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
# label="Model type",
# multiselect=False,
# value=None,
# interactive=True,
# )
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# weight_type,
# model_type,
# ],
# submission_result,
# )
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()