luanagbmartins commited on
Commit
b32e3ed
Β·
1 Parent(s): 40122c3

update name and envs

Browse files
Files changed (3) hide show
  1. app.py +24 -8
  2. src/about.py +5 -4
  3. src/envs.py +8 -6
app.py CHANGED
@@ -22,7 +22,7 @@ from src.display.utils import (
22
  ModelType,
23
  fields,
24
  WeightType,
25
- Precision
26
  )
27
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
@@ -32,18 +32,29 @@ from src.submission.submit import add_new_eval
32
  def restart_space():
33
  API.restart_space(repo_id=REPO_ID)
34
 
 
35
  ### Space initialisation
36
  try:
37
  print(EVAL_REQUESTS_PATH)
38
  snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
 
 
 
 
 
40
  )
41
  except Exception:
42
  restart_space()
43
  try:
44
  print(EVAL_RESULTS_PATH)
45
  snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
 
 
 
 
 
47
  )
48
  except Exception:
49
  restart_space()
@@ -57,6 +68,7 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
57
  pending_eval_queue_df,
58
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
 
 
60
  def init_leaderboard(dataframe):
61
  if dataframe is None or dataframe.empty:
62
  raise ValueError("Leaderboard DataFrame is empty or None.")
@@ -80,9 +92,7 @@ def init_leaderboard(dataframe):
80
  max=150,
81
  label="Select the number of parameters (B)",
82
  ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
  ],
87
  bool_checkboxgroup_label="Hide models",
88
  interactive=False,
@@ -95,7 +105,13 @@ with demo:
95
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
 
97
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
 
 
 
 
 
 
99
  leaderboard = init_leaderboard(LEADERBOARD_DF)
100
 
101
  with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
@@ -201,4 +217,4 @@ with demo:
201
  scheduler = BackgroundScheduler()
202
  scheduler.add_job(restart_space, "interval", seconds=1800)
203
  scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
22
  ModelType,
23
  fields,
24
  WeightType,
25
+ Precision,
26
  )
27
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
 
32
  def restart_space():
33
  API.restart_space(repo_id=REPO_ID)
34
 
35
+
36
  ### Space initialisation
37
  try:
38
  print(EVAL_REQUESTS_PATH)
39
  snapshot_download(
40
+ repo_id=QUEUE_REPO,
41
+ local_dir=EVAL_REQUESTS_PATH,
42
+ repo_type="dataset",
43
+ tqdm_class=None,
44
+ etag_timeout=30,
45
+ token=TOKEN,
46
  )
47
  except Exception:
48
  restart_space()
49
  try:
50
  print(EVAL_RESULTS_PATH)
51
  snapshot_download(
52
+ repo_id=RESULTS_REPO,
53
+ local_dir=EVAL_RESULTS_PATH,
54
+ repo_type="dataset",
55
+ tqdm_class=None,
56
+ etag_timeout=30,
57
+ token=TOKEN,
58
  )
59
  except Exception:
60
  restart_space()
 
68
  pending_eval_queue_df,
69
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
70
 
71
+
72
  def init_leaderboard(dataframe):
73
  if dataframe is None or dataframe.empty:
74
  raise ValueError("Leaderboard DataFrame is empty or None.")
 
92
  max=150,
93
  label="Select the number of parameters (B)",
94
  ),
95
+ ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
 
 
96
  ],
97
  bool_checkboxgroup_label="Hide models",
98
  interactive=False,
 
105
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
106
 
107
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
108
+ with gr.TabItem("πŸ… Position Bias Analyzer", elem_id="llm-benchmark-tab-table", id=0):
109
+ leaderboard = init_leaderboard(LEADERBOARD_DF)
110
+
111
+ with gr.TabItem("πŸ… LLMBar Natural", elem_id="llm-benchmark-tab-table", id=4):
112
+ leaderboard = init_leaderboard(LEADERBOARD_DF)
113
+
114
+ with gr.TabItem("πŸ… LLMBar Adversarial (Manual)", elem_id="llm-benchmark-tab-table", id=5):
115
  leaderboard = init_leaderboard(LEADERBOARD_DF)
116
 
117
  with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
 
217
  scheduler = BackgroundScheduler()
218
  scheduler.add_job(restart_space, "interval", seconds=1800)
219
  scheduler.start()
220
+ demo.queue(default_concurrency_limit=40).launch()
src/about.py CHANGED
@@ -1,6 +1,7 @@
1
  from dataclasses import dataclass
2
  from enum import Enum
3
 
 
4
  @dataclass
5
  class Task:
6
  benchmark: str
@@ -11,17 +12,17 @@ class Task:
11
  # Select your tasks here
12
  # ---------------------------------------------------
13
  class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
  task0 = Task("anli_r1", "acc", "ANLI")
16
  task1 = Task("logiqa", "acc_norm", "LogiQA")
17
 
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
 
 
 
21
 
22
 
23
  # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
 
26
  # What does your leaderboard evaluate?
27
  INTRODUCTION_TEXT = """
 
1
  from dataclasses import dataclass
2
  from enum import Enum
3
 
4
+
5
  @dataclass
6
  class Task:
7
  benchmark: str
 
12
  # Select your tasks here
13
  # ---------------------------------------------------
14
  class Tasks(Enum):
15
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
16
  task0 = Task("anli_r1", "acc", "ANLI")
17
  task1 = Task("logiqa", "acc_norm", "LogiQA")
18
 
 
 
19
 
20
+ NUM_FEWSHOT = 0 # Change with your few shot
21
+ # ---------------------------------------------------
22
 
23
 
24
  # Your leaderboard name
25
+ TITLE = """<h1 align="center" id="space-title">LLM as Judge Eval</h1>"""
26
 
27
  # What does your leaderboard evaluate?
28
  INTRODUCTION_TEXT = """
src/envs.py CHANGED
@@ -4,17 +4,19 @@ from huggingface_hub import HfApi
4
 
5
  # Info to change for your repository
6
  # ----------------------------------
7
- TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
 
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
 
 
10
  # ----------------------------------
11
 
12
- REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
 
16
  # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
 
19
  # Local caches
20
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
 
4
 
5
  # Info to change for your repository
6
  # ----------------------------------
7
+ TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
 
9
+ OWNER = (
10
+ "CEIA-RL" # Change to your org - don't forget to create a results and request dataset, with the correct format!
11
+ )
12
  # ----------------------------------
13
 
14
+ REPO_ID = f"{OWNER}/LLMasJudgeEval"
15
+ QUEUE_REPO = f"{OWNER}/judge_requests"
16
+ RESULTS_REPO = f"{OWNER}/judge_results"
17
 
18
  # If you setup a cache later, just change HF_HOME
19
+ CACHE_PATH = os.getenv("HF_HOME", ".")
20
 
21
  # Local caches
22
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")