Spaces:
Sleeping
Sleeping
Commit
Β·
b32e3ed
1
Parent(s):
40122c3
update name and envs
Browse files- app.py +24 -8
- src/about.py +5 -4
- src/envs.py +8 -6
app.py
CHANGED
@@ -22,7 +22,7 @@ from src.display.utils import (
|
|
22 |
ModelType,
|
23 |
fields,
|
24 |
WeightType,
|
25 |
-
Precision
|
26 |
)
|
27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
@@ -32,18 +32,29 @@ from src.submission.submit import add_new_eval
|
|
32 |
def restart_space():
|
33 |
API.restart_space(repo_id=REPO_ID)
|
34 |
|
|
|
35 |
### Space initialisation
|
36 |
try:
|
37 |
print(EVAL_REQUESTS_PATH)
|
38 |
snapshot_download(
|
39 |
-
repo_id=QUEUE_REPO,
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
except Exception:
|
42 |
restart_space()
|
43 |
try:
|
44 |
print(EVAL_RESULTS_PATH)
|
45 |
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO,
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
except Exception:
|
49 |
restart_space()
|
@@ -57,6 +68,7 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
57 |
pending_eval_queue_df,
|
58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
|
|
60 |
def init_leaderboard(dataframe):
|
61 |
if dataframe is None or dataframe.empty:
|
62 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
@@ -80,9 +92,7 @@ def init_leaderboard(dataframe):
|
|
80 |
max=150,
|
81 |
label="Select the number of parameters (B)",
|
82 |
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
],
|
87 |
bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
@@ -95,7 +105,13 @@ with demo:
|
|
95 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("π
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
|
101 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
@@ -201,4 +217,4 @@ with demo:
|
|
201 |
scheduler = BackgroundScheduler()
|
202 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
22 |
ModelType,
|
23 |
fields,
|
24 |
WeightType,
|
25 |
+
Precision,
|
26 |
)
|
27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
32 |
def restart_space():
|
33 |
API.restart_space(repo_id=REPO_ID)
|
34 |
|
35 |
+
|
36 |
### Space initialisation
|
37 |
try:
|
38 |
print(EVAL_REQUESTS_PATH)
|
39 |
snapshot_download(
|
40 |
+
repo_id=QUEUE_REPO,
|
41 |
+
local_dir=EVAL_REQUESTS_PATH,
|
42 |
+
repo_type="dataset",
|
43 |
+
tqdm_class=None,
|
44 |
+
etag_timeout=30,
|
45 |
+
token=TOKEN,
|
46 |
)
|
47 |
except Exception:
|
48 |
restart_space()
|
49 |
try:
|
50 |
print(EVAL_RESULTS_PATH)
|
51 |
snapshot_download(
|
52 |
+
repo_id=RESULTS_REPO,
|
53 |
+
local_dir=EVAL_RESULTS_PATH,
|
54 |
+
repo_type="dataset",
|
55 |
+
tqdm_class=None,
|
56 |
+
etag_timeout=30,
|
57 |
+
token=TOKEN,
|
58 |
)
|
59 |
except Exception:
|
60 |
restart_space()
|
|
|
68 |
pending_eval_queue_df,
|
69 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
70 |
|
71 |
+
|
72 |
def init_leaderboard(dataframe):
|
73 |
if dataframe is None or dataframe.empty:
|
74 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
92 |
max=150,
|
93 |
label="Select the number of parameters (B)",
|
94 |
),
|
95 |
+
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
|
|
|
|
96 |
],
|
97 |
bool_checkboxgroup_label="Hide models",
|
98 |
interactive=False,
|
|
|
105 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
106 |
|
107 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
108 |
+
with gr.TabItem("π
Position Bias Analyzer", elem_id="llm-benchmark-tab-table", id=0):
|
109 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
110 |
+
|
111 |
+
with gr.TabItem("π
LLMBar Natural", elem_id="llm-benchmark-tab-table", id=4):
|
112 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
113 |
+
|
114 |
+
with gr.TabItem("π
LLMBar Adversarial (Manual)", elem_id="llm-benchmark-tab-table", id=5):
|
115 |
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
116 |
|
117 |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
|
|
217 |
scheduler = BackgroundScheduler()
|
218 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
219 |
scheduler.start()
|
220 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/about.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
|
|
4 |
@dataclass
|
5 |
class Task:
|
6 |
benchmark: str
|
@@ -11,17 +12,17 @@ class Task:
|
|
11 |
# Select your tasks here
|
12 |
# ---------------------------------------------------
|
13 |
class Tasks(Enum):
|
14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
task0 = Task("anli_r1", "acc", "ANLI")
|
16 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
17 |
|
18 |
-
NUM_FEWSHOT = 0 # Change with your few shot
|
19 |
-
# ---------------------------------------------------
|
20 |
|
|
|
|
|
21 |
|
22 |
|
23 |
# Your leaderboard name
|
24 |
-
TITLE = """<h1 align="center" id="space-title">
|
25 |
|
26 |
# What does your leaderboard evaluate?
|
27 |
INTRODUCTION_TEXT = """
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
4 |
+
|
5 |
@dataclass
|
6 |
class Task:
|
7 |
benchmark: str
|
|
|
12 |
# Select your tasks here
|
13 |
# ---------------------------------------------------
|
14 |
class Tasks(Enum):
|
15 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
16 |
task0 = Task("anli_r1", "acc", "ANLI")
|
17 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
18 |
|
|
|
|
|
19 |
|
20 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
21 |
+
# ---------------------------------------------------
|
22 |
|
23 |
|
24 |
# Your leaderboard name
|
25 |
+
TITLE = """<h1 align="center" id="space-title">LLM as Judge Eval</h1>"""
|
26 |
|
27 |
# What does your leaderboard evaluate?
|
28 |
INTRODUCTION_TEXT = """
|
src/envs.py
CHANGED
@@ -4,17 +4,19 @@ from huggingface_hub import HfApi
|
|
4 |
|
5 |
# Info to change for your repository
|
6 |
# ----------------------------------
|
7 |
-
TOKEN = os.environ.get("HF_TOKEN")
|
8 |
|
9 |
-
OWNER =
|
|
|
|
|
10 |
# ----------------------------------
|
11 |
|
12 |
-
REPO_ID = f"{OWNER}/
|
13 |
-
QUEUE_REPO = f"{OWNER}/
|
14 |
-
RESULTS_REPO = f"{OWNER}/
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
|
19 |
# Local caches
|
20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
|
|
4 |
|
5 |
# Info to change for your repository
|
6 |
# ----------------------------------
|
7 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
|
9 |
+
OWNER = (
|
10 |
+
"CEIA-RL" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
11 |
+
)
|
12 |
# ----------------------------------
|
13 |
|
14 |
+
REPO_ID = f"{OWNER}/LLMasJudgeEval"
|
15 |
+
QUEUE_REPO = f"{OWNER}/judge_requests"
|
16 |
+
RESULTS_REPO = f"{OWNER}/judge_results"
|
17 |
|
18 |
# If you setup a cache later, just change HF_HOME
|
19 |
+
CACHE_PATH = os.getenv("HF_HOME", ".")
|
20 |
|
21 |
# Local caches
|
22 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|