import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "CHARKA/Llama-2-7b-chat-h-maroc_edu" # Charger le modèle et le tokenizer depuis le Hub model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Fonction de génération de texte def generate_text(input_text): inputs = tokenizer.encode(input_text, return_tensors="pt") outputs = model.generate(inputs, max_length=100, num_return_sequences=1) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Créer l'interface Gradio interface = gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=2, placeholder="أدخل طلبك هنا"), outputs="text", title="التفاعل مع النموذج", description="اجهة تفاعل تستخدم نموذج توليد النصوص" ) # Lancer l'interface interface.launch()