File size: 6,352 Bytes
3a69f6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Copyright 2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Beam pipeline that generates Vimeo-90K (train or test) triplet TFRecords.
Vimeo-90K dataset is built upon 5,846 videos downloaded from vimeo.com. The list
of the original video links are available here:
https://github.com/anchen1011/toflow/blob/master/data/original_vimeo_links.txt.
Each video is further cropped into a fixed spatial size of (448 x 256) to create
89,000 video clips.
The Vimeo-90K dataset is designed for four video processing tasks. This script
creates the TFRecords of frame triplets for frame interpolation task.
Temporal frame interpolation triplet dataset:
- 73,171 triplets of size (448x256) extracted from 15K subsets of Vimeo-90K.
- The triplets are pre-split into (train,test) = (51313,3782)
- Download links:
Test-set: http://data.csail.mit.edu/tofu/testset/vimeo_interp_test.zip
Train+test-set: http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
For more information, see the arXiv paper, project page or the GitHub link.
@article{xue17toflow,
author = {Xue, Tianfan and
Chen, Baian and
Wu, Jiajun and
Wei, Donglai and
Freeman, William T},
title = {Video Enhancement with Task-Oriented Flow},
journal = {arXiv},
year = {2017}
}
Project: http://toflow.csail.mit.edu/
GitHub: https://github.com/anchen1011/toflow
Inputs to the script are (1) the directory to the downloaded and unzipped folder
(2) the filepath of the text-file that lists the subfolders of the triplets.
Output TFRecord is a tf.train.Example proto of each image triplet.
The feature_map takes the form:
feature_map {
'frame_0/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'frame_0/format':
tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
'frame_0/height':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_0/width':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_1/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'frame_1/format':
tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
'frame_1/height':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_1/width':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_2/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'frame_2/format':
tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
'frame_2/height':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_2/width':
tf.io.FixedLenFeature((), tf.int64, default_value=0)
'path':
tf.io.FixedLenFeature((), tf.string, default_value='')
}
Usage example:
python3 -m frame_interpolation.datasets.create_vimeo90K_tfrecord \
--input_dir=<root folder of vimeo90K dataset> \
--input_triplet_list_filepath=<filepath of tri_{test|train}list.txt> \
--output_tfrecord_filepath=<output tfrecord filepath>
"""
import os
from . import util
from absl import app
from absl import flags
from absl import logging
import apache_beam as beam
import numpy as np
import tensorflow as tf
_INPUT_DIR = flags.DEFINE_string(
'input_dir',
default='/path/to/raw_vimeo_interp/sequences',
help='Path to the root directory of the vimeo frame interpolation dataset. '
'We expect the data to have been downloaded and unzipped.\n'
'Folder structures:\n'
'| raw_vimeo_dataset/\n'
'| sequences/\n'
'| | 00001\n'
'| | | 0389/\n'
'| | | | im1.png\n'
'| | | | im2.png\n'
'| | | | im3.png\n'
'| | | ...\n'
'| | 00002/\n'
'| | ...\n'
'| readme.txt\n'
'| tri_trainlist.txt\n'
'| tri_testlist.txt \n')
_INTPUT_TRIPLET_LIST_FILEPATH = flags.DEFINE_string(
'input_triplet_list_filepath',
default='/path/to/raw_vimeo_dataset/tri_{test|train}list.txt',
help='Text file containing a list of sub-directories of input triplets.')
_OUTPUT_TFRECORD_FILEPATH = flags.DEFINE_string(
'output_tfrecord_filepath',
default=None,
help='Filepath to the output TFRecord file.')
_NUM_SHARDS = flags.DEFINE_integer('num_shards',
default=200, # set to 3 for vimeo_test, and 200 for vimeo_train.
help='Number of shards used for the output.')
# Image key -> basename for frame interpolator: start / middle / end frames.
_INTERPOLATOR_IMAGES_MAP = {
'frame_0': 'im1.png',
'frame_1': 'im2.png',
'frame_2': 'im3.png',
}
def main(unused_argv):
"""Creates and runs a Beam pipeline to write frame triplets as a TFRecord."""
with tf.io.gfile.GFile(_INTPUT_TRIPLET_LIST_FILEPATH.value, 'r') as fid:
triplets_list = np.loadtxt(fid, dtype=str)
triplet_dicts = []
for triplet in triplets_list:
triplet_dict = {
image_key: os.path.join(_INPUT_DIR.value, triplet, image_basename)
for image_key, image_basename in _INTERPOLATOR_IMAGES_MAP.items()
}
triplet_dicts.append(triplet_dict)
p = beam.Pipeline('DirectRunner')
(p | 'ReadInputTripletDicts' >> beam.Create(triplet_dicts) # pylint: disable=expression-not-assigned
| 'GenerateSingleExample' >> beam.ParDo(
util.ExampleGenerator(_INTERPOLATOR_IMAGES_MAP))
| 'WriteToTFRecord' >> beam.io.tfrecordio.WriteToTFRecord(
file_path_prefix=_OUTPUT_TFRECORD_FILEPATH.value,
num_shards=_NUM_SHARDS.value,
coder=beam.coders.BytesCoder()))
result = p.run()
result.wait_until_finish()
logging.info('Succeeded in creating the output TFRecord file: \'%s@%s\'.',
_OUTPUT_TFRECORD_FILEPATH.value, str(_NUM_SHARDS.value))
if __name__ == '__main__':
app.run(main)
|