File size: 6,721 Bytes
2061d64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# Copyright 2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Dataset augmentation for frame interpolation."""
from typing import Callable, Dict, List
import gin.tf
import numpy as np
import tensorflow as tf
import tensorflow.math as tfm
import tensorflow_addons.image as tfa_image
_PI = 3.141592653589793
def _rotate_flow_vectors(flow: tf.Tensor, angle_rad: float) -> tf.Tensor:
r"""Rotate the (u,v) vector of each pixel with angle in radians.
Flow matrix system of coordinates.
. . . . u (x)
.
.
. v (-y)
Rotation system of coordinates.
. y
.
.
. . . . x
Args:
flow: Flow map which has been image-rotated.
angle_rad: The rotation angle in radians.
Returns:
A flow with the same map but each (u,v) vector rotated by angle_rad.
"""
u, v = tf.split(flow, 2, axis=-1)
# rotu = u * cos(angle) - (-v) * sin(angle)
rot_u = tfm.cos(angle_rad) * u + tfm.sin(angle_rad) * v
# rotv = -(u * sin(theta) + (-v) * cos(theta))
rot_v = -tfm.sin(angle_rad) * u + tfm.cos(angle_rad) * v
return tf.concat((rot_u, rot_v), axis=-1)
def flow_rot90(flow: tf.Tensor, k: int) -> tf.Tensor:
"""Rotates a flow by a multiple of 90 degrees.
Args:
flow: The flow image shaped (H, W, 2) to rotate by multiples of 90 degrees.
k: The multiplier factor.
Returns:
A flow image of the same shape as the input rotated by multiples of 90
degrees.
"""
angle_rad = tf.cast(k, dtype=tf.float32) * 90. * (_PI/180.)
flow = tf.image.rot90(flow, k)
return _rotate_flow_vectors(flow, angle_rad)
def rotate_flow(flow: tf.Tensor, angle_rad: float) -> tf.Tensor:
"""Rotates a flow by a the provided angle in radians.
Args:
flow: The flow image shaped (H, W, 2) to rotate by multiples of 90 degrees.
angle_rad: The angle to ratate the flow in radians.
Returns:
A flow image of the same shape as the input rotated by the provided angle in
radians.
"""
flow = tfa_image.rotate(
flow,
angles=angle_rad,
interpolation='bilinear',
fill_mode='reflect')
return _rotate_flow_vectors(flow, angle_rad)
def flow_flip(flow: tf.Tensor) -> tf.Tensor:
"""Flips a flow left to right.
Args:
flow: The flow image shaped (H, W, 2) to flip left to right.
Returns:
A flow image of the same shape as the input flipped left to right.
"""
flow = tf.image.flip_left_right(tf.identity(flow))
flow_u, flow_v = tf.split(flow, 2, axis=-1)
return tf.stack([-1 * flow_u, flow_v], axis=-1)
def random_image_rot90(images: Dict[str, tf.Tensor]) -> Dict[str, tf.Tensor]:
"""Rotates a stack of images by a random multiples of 90 degrees.
Args:
images: A tf.Tensor shaped (H, W, num_channels) of images stacked along the
channel's axis.
Returns:
A tf.Tensor of the same rank as the `images` after random rotation by
multiples of 90 degrees applied counter-clock wise.
"""
random_k = tf.random.uniform((), minval=0, maxval=4, dtype=tf.int32)
for key in images:
images[key] = tf.image.rot90(images[key], k=random_k)
return images
def random_flip(images: Dict[str, tf.Tensor]) -> Dict[str, tf.Tensor]:
"""Flips a stack of images randomly.
Args:
images: A tf.Tensor shaped (H, W, num_channels) of images stacked along the
channel's axis.
Returns:
A tf.Tensor of the images after random left to right flip.
"""
prob = tf.random.uniform((), minval=0, maxval=2, dtype=tf.int32)
prob = tf.cast(prob, tf.bool)
def _identity(image):
return image
def _flip_left_right(image):
return tf.image.flip_left_right(image)
# pylint: disable=cell-var-from-loop
for key in images:
images[key] = tf.cond(prob, lambda: _flip_left_right(images[key]),
lambda: _identity(images[key]))
return images
def random_reverse(images: Dict[str, tf.Tensor]) -> Dict[str, tf.Tensor]:
"""Reverses a stack of images randomly.
Args:
images: A dictionary of tf.Tensors, each shaped (H, W, num_channels), with
each tensor being a stack of iamges along the last channel axis.
Returns:
A dictionary of tf.Tensors, each shaped the same as the input images dict.
"""
prob = tf.random.uniform((), minval=0, maxval=2, dtype=tf.int32)
prob = tf.cast(prob, tf.bool)
def _identity(images):
return images
def _reverse(images):
images['x0'], images['x1'] = images['x1'], images['x0']
return images
return tf.cond(prob, lambda: _reverse(images), lambda: _identity(images))
def random_rotate(images: Dict[str, tf.Tensor]) -> Dict[str, tf.Tensor]:
"""Rotates image randomly with [-45 to 45 degrees].
Args:
images: A tf.Tensor shaped (H, W, num_channels) of images stacked along the
channel's axis.
Returns:
A tf.Tensor of the images after random rotation with a bound of -72 to 72
degrees.
"""
prob = tf.random.uniform((), minval=0, maxval=2, dtype=tf.int32)
prob = tf.cast(prob, tf.float32)
random_angle = tf.random.uniform((),
minval=-0.25 * np.pi,
maxval=0.25 * np.pi,
dtype=tf.float32)
for key in images:
images[key] = tfa_image.rotate(
images[key],
angles=random_angle * prob,
interpolation='bilinear',
fill_mode='constant')
return images
@gin.configurable('data_augmentation')
def data_augmentations(
names: List[str]) -> Dict[str, Callable[..., tf.Tensor]]:
"""Creates the data augmentation functions.
Args:
names: The list of augmentation function names.
Returns:
A dictionary of Callables to the augmentation functions, keyed by their
names.
"""
augmentations = dict()
for name in names:
if name == 'random_image_rot90':
augmentations[name] = random_image_rot90
elif name == 'random_rotate':
augmentations[name] = random_rotate
elif name == 'random_flip':
augmentations[name] = random_flip
elif name == 'random_reverse':
augmentations[name] = random_reverse
else:
raise AttributeError('Invalid augmentation function %s' % name)
return augmentations
|