File size: 3,467 Bytes
2061d64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
# Copyright 2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Converts TF2 training checkpoint to a saved model.
The model must match the checkpoint, so the gin config must be given.
Usage example:
python3 -m frame_interpolation.training.build_saved_model_cli \
--gin_config <filepath of the gin config the training session was based> \
--base_folder <base folder of training sessions> \
--label <the name of the run>
This will produce a saved model into: <base_folder>/<label>/saved_model
"""
import os
from typing import Sequence
from . import model_lib
from absl import app
from absl import flags
from absl import logging
import gin.tf
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
_GIN_CONFIG = flags.DEFINE_string(
name='gin_config',
default='config.gin',
help='Gin config file, saved in the training session <root folder>.')
_LABEL = flags.DEFINE_string(
name='label',
default=None,
required=True,
help='Descriptive label for the training session.')
_BASE_FOLDER = flags.DEFINE_string(
name='base_folder',
default=None,
help='Path to all training sessions.')
_MODE = flags.DEFINE_enum(
name='mode',
default=None,
enum_values=['cpu', 'gpu', 'tpu'],
help='Distributed strategy approach.')
def _build_saved_model(checkpoint_path: str, config_files: Sequence[str],
output_model_path: str):
"""Builds a saved model based on the checkpoint directory."""
gin.parse_config_files_and_bindings(
config_files=config_files,
bindings=None,
skip_unknown=True)
model = model_lib.create_model()
checkpoint = tf.train.Checkpoint(model=model)
checkpoint_file = tf.train.latest_checkpoint(checkpoint_path)
try:
logging.info('Restoring from %s', checkpoint_file)
status = checkpoint.restore(checkpoint_file)
status.assert_existing_objects_matched()
status.expect_partial()
model.save(output_model_path)
except (tf.errors.NotFoundError, AssertionError) as err:
logging.info('Failed to restore checkpoint from %s. Error:\n%s',
checkpoint_file, err)
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
checkpoint_path = os.path.join(_BASE_FOLDER.value, _LABEL.value, 'train')
if not tf.io.gfile.exists(_GIN_CONFIG.value):
config_file = os.path.join(_BASE_FOLDER.value, _LABEL.value,
_GIN_CONFIG.value)
else:
config_file = _GIN_CONFIG.value
output_model_path = os.path.join(_BASE_FOLDER.value, _LABEL.value,
'saved_model')
_build_saved_model(
checkpoint_path=checkpoint_path,
config_files=[config_file],
output_model_path=output_model_path)
logging.info('The saved model stored into %s/.', output_model_path)
if __name__ == '__main__':
app.run(main)
|