File size: 11,267 Bytes
2061d64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# Copyright 2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Dataset creation for frame interpolation."""
from typing import Callable, Dict, List, Optional
from absl import logging
import gin.tf
import tensorflow as tf
def _create_feature_map() -> Dict[str, tf.io.FixedLenFeature]:
"""Creates the feature map for extracting the frame triplet."""
feature_map = {
'frame_0/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'frame_0/format':
tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
'frame_0/height':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_0/width':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_1/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'frame_1/format':
tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
'frame_1/height':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_1/width':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_2/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'frame_2/format':
tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
'frame_2/height':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_2/width':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'path':
tf.io.FixedLenFeature((), tf.string, default_value=''),
}
return feature_map
def _parse_example(sample):
"""Parses a serialized sample.
Args:
sample: A serialized tf.Example to be parsed.
Returns:
dictionary containing the following:
encoded_image
image_height
image_width
"""
feature_map = _create_feature_map()
features = tf.io.parse_single_example(sample, feature_map)
output_dict = {
'x0': tf.io.decode_image(features['frame_0/encoded'], dtype=tf.float32),
'x1': tf.io.decode_image(features['frame_2/encoded'], dtype=tf.float32),
'y': tf.io.decode_image(features['frame_1/encoded'], dtype=tf.float32),
# The fractional time value of frame_1 is not included in our tfrecords,
# but is always at 0.5. The model will expect this to be specificed, so
# we insert it here.
'time': 0.5,
# Store the original mid frame filepath for identifying examples.
'path': features['path'],
}
return output_dict
def _random_crop_images(crop_size: int, images: tf.Tensor,
total_channel_size: int) -> tf.Tensor:
"""Crops the tensor with random offset to the given size."""
if crop_size > 0:
crop_shape = tf.constant([crop_size, crop_size, total_channel_size])
images = tf.image.random_crop(images, crop_shape)
return images
def crop_example(example: tf.Tensor, crop_size: int,
crop_keys: Optional[List[str]] = None):
"""Random crops selected images in the example to given size and keys.
Args:
example: Input tensor representing images to be cropped.
crop_size: The size to crop images to. This value is used for both
height and width.
crop_keys: The images in the input example to crop.
Returns:
Example with cropping applied to selected images.
"""
if crop_keys is None:
crop_keys = ['x0', 'x1', 'y']
channels = [3, 3, 3]
# Stack images along channel axis, and perform a random crop once.
image_to_crop = [example[key] for key in crop_keys]
stacked_images = tf.concat(image_to_crop, axis=-1)
cropped_images = _random_crop_images(crop_size, stacked_images, sum(channels))
cropped_images = tf.split(
cropped_images, num_or_size_splits=channels, axis=-1)
for key, cropped_image in zip(crop_keys, cropped_images):
example[key] = cropped_image
return example
def apply_data_augmentation(
augmentation_fns: Dict[str, Callable[..., tf.Tensor]],
example: tf.Tensor,
augmentation_keys: Optional[List[str]] = None) -> tf.Tensor:
"""Applies random augmentation in succession to selected image keys.
Args:
augmentation_fns: A Dict of Callables to data augmentation functions.
example: Input tensor representing images to be augmented.
augmentation_keys: The images in the input example to augment.
Returns:
Example with augmentation applied to selected images.
"""
if augmentation_keys is None:
augmentation_keys = ['x0', 'x1', 'y']
# Apply each augmentation in sequence
augmented_images = {key: example[key] for key in augmentation_keys}
for augmentation_function in augmentation_fns.values():
augmented_images = augmentation_function(augmented_images)
for key in augmentation_keys:
example[key] = augmented_images[key]
return example
def _create_from_tfrecord(batch_size, file, augmentation_fns,
crop_size) -> tf.data.Dataset:
"""Creates a dataset from TFRecord."""
dataset = tf.data.TFRecordDataset(file)
dataset = dataset.map(
_parse_example, num_parallel_calls=tf.data.experimental.AUTOTUNE)
# Perform data_augmentation before cropping and batching
if augmentation_fns is not None:
dataset = dataset.map(
lambda x: apply_data_augmentation(augmentation_fns, x),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
if crop_size > 0:
dataset = dataset.map(
lambda x: crop_example(x, crop_size=crop_size),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=True)
return dataset
def _generate_sharded_filenames(filename: str) -> List[str]:
"""Generates filenames of the each file in the sharded filepath.
Based on github.com/google/revisiting-self-supervised/blob/master/datasets.py.
Args:
filename: The sharded filepath.
Returns:
A list of filepaths for each file in the shard.
"""
base, count = filename.split('@')
count = int(count)
return ['{}-{:05d}-of-{:05d}'.format(base, i, count) for i in range(count)]
def _create_from_sharded_tfrecord(batch_size,
train_mode,
file,
augmentation_fns,
crop_size,
max_examples=-1) -> tf.data.Dataset:
"""Creates a dataset from a sharded tfrecord."""
dataset = tf.data.Dataset.from_tensor_slices(
_generate_sharded_filenames(file))
# pylint: disable=g-long-lambda
dataset = dataset.interleave(
lambda x: _create_from_tfrecord(
batch_size,
file=x,
augmentation_fns=augmentation_fns,
crop_size=crop_size),
num_parallel_calls=tf.data.AUTOTUNE,
deterministic=not train_mode)
# pylint: enable=g-long-lambda
dataset = dataset.prefetch(buffer_size=2)
if max_examples > 0:
return dataset.take(max_examples)
return dataset
@gin.configurable('training_dataset')
def create_training_dataset(
batch_size: int,
file: Optional[str] = None,
files: Optional[List[str]] = None,
crop_size: int = -1,
crop_sizes: Optional[List[int]] = None,
augmentation_fns: Optional[Dict[str, Callable[..., tf.Tensor]]] = None
) -> tf.data.Dataset:
"""Creates the training dataset.
The given tfrecord should contain data in a format produced by
frame_interpolation/datasets/create_*_tfrecord.py
Args:
batch_size: The number of images to batch per example.
file: (deprecated) A path to a sharded tfrecord in <tfrecord>@N format.
Deprecated. Use 'files' instead.
files: A list of paths to sharded tfrecords in <tfrecord>@N format.
crop_size: (deprecated) If > 0, images are cropped to crop_size x crop_size
using tensorflow's random cropping. Deprecated: use 'files' and
'crop_sizes' instead.
crop_sizes: List of crop sizes. If > 0, images are cropped to
crop_size x crop_size using tensorflow's random cropping.
augmentation_fns: A Dict of Callables to data augmentation functions.
Returns:
A tensorflow dataset for accessing examples that contain the input images
'x0', 'x1', ground truth 'y' and time of the ground truth 'time'=[0,1] in a
dictionary of tensors.
"""
if file:
logging.warning('gin-configurable training_dataset.file is deprecated. '
'Use training_dataset.files instead.')
return _create_from_sharded_tfrecord(batch_size, True, file,
augmentation_fns, crop_size)
else:
if not crop_sizes or len(crop_sizes) != len(files):
raise ValueError('Please pass crop_sizes[] with training_dataset.files.')
if crop_size > 0:
raise ValueError(
'crop_size should not be used with files[], use crop_sizes[] instead.'
)
tables = []
for file, crop_size in zip(files, crop_sizes):
tables.append(
_create_from_sharded_tfrecord(batch_size, True, file,
augmentation_fns, crop_size))
return tf.data.experimental.sample_from_datasets(tables)
@gin.configurable('eval_datasets')
def create_eval_datasets(batch_size: int,
files: List[str],
names: List[str],
crop_size: int = -1,
max_examples: int = -1) -> Dict[str, tf.data.Dataset]:
"""Creates the evaluation datasets.
As opposed to create_training_dataset this function makes sure that the
examples for each dataset are always read in a deterministic (same) order.
Each given tfrecord should contain data in a format produced by
frame_interpolation/datasets/create_*_tfrecord.py
The (batch_size, crop_size, max_examples) are specified for all eval datasets.
Args:
batch_size: The number of images to batch per example.
files: List of paths to a sharded tfrecord in <tfrecord>@N format.
names: List of names of eval datasets.
crop_size: If > 0, images are cropped to crop_size x crop_size using
tensorflow's random cropping.
max_examples: If > 0, truncate the dataset to 'max_examples' in length. This
can be useful for speeding up evaluation loop in case the tfrecord for the
evaluation set is very large.
Returns:
A dict of name to tensorflow dataset for accessing examples that contain the
input images 'x0', 'x1', ground truth 'y' and time of the ground truth
'time'=[0,1] in a dictionary of tensors.
"""
return {
name: _create_from_sharded_tfrecord(batch_size, False, file, None,
crop_size, max_examples)
for name, file in zip(names, files)
}
|