File size: 13,782 Bytes
2061d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright 2022 Google LLC

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Training library for frame interpolation using distributed strategy."""
import functools
from typing import Any, Callable, Dict, Text, Tuple

from absl import logging
import tensorflow as tf


def _concat_tensors(tensors: tf.Tensor) -> tf.Tensor:
  """Concat tensors of the different replicas."""
  return tf.concat(tf.nest.flatten(tensors, expand_composites=True), axis=0)


@tf.function
def _distributed_train_step(strategy: tf.distribute.Strategy,
                            batch: Dict[Text, tf.Tensor], model: tf.keras.Model,
                            loss_functions: Dict[Text,
                                                 Tuple[Callable[..., tf.Tensor],
                                                       Callable[...,
                                                                tf.Tensor]]],
                            optimizer: tf.keras.optimizers.Optimizer,
                            iterations: int) -> Dict[Text, Any]:
  """Distributed training step.

  Args:
    strategy: A Tensorflow distribution strategy.
    batch: A batch of training examples.
    model: The Keras model to train.
    loss_functions: The list of Keras losses used to train the model.
    optimizer: The Keras optimizer used to train the model.
    iterations: Iteration number used to sample weights to each loss.

  Returns:
    A dictionary of train step outputs.
  """

  def _train_step(batch: Dict[Text, tf.Tensor]) -> Dict[Text, tf.Tensor]:
    """Train for one step."""
    with tf.GradientTape() as tape:
      predictions = model(batch, training=True)
      losses = []
      for (loss_value, loss_weight) in loss_functions.values():
        losses.append(loss_value(batch, predictions) * loss_weight(iterations))
      loss = tf.add_n(losses)
    grads = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(grads, model.trainable_variables))
    # post process for visualization
    all_data = {'loss': loss}
    all_data.update(batch)
    all_data.update(predictions)
    return all_data

  step_outputs = strategy.run(_train_step, args=(batch,))

  loss = strategy.reduce(
      tf.distribute.ReduceOp.MEAN, step_outputs['loss'], axis=None)

  x0 = _concat_tensors(step_outputs['x0'])
  x1 = _concat_tensors(step_outputs['x1'])
  y = _concat_tensors(step_outputs['y'])
  pred_y = _concat_tensors(step_outputs['image'])

  scalar_summaries = {'training_loss': loss}

  image_summaries = {
      'x0': x0,
      'x1': x1,
      'y': y,
      'pred_y': pred_y
  }

  extra_images = {
      'importance0', 'importance1', 'x0_warped', 'x1_warped', 'fg_image',
      'bg_image', 'fg_alpha', 'x1_unfiltered_warped'
  }
  for image in extra_images:
    if image in step_outputs:
      image_summaries[image] = _concat_tensors(step_outputs[image])

  return {
      'loss': loss,
      'scalar_summaries': scalar_summaries,
      'image_summaries': {
          f'training/{name}': value for name, value in image_summaries.items()
      }
  }


def _summary_writer(summaries_dict: Dict[Text, Any]) -> None:
  """Adds scalar and image summaries."""
  # Adds scalar summaries.
  for key, scalars in summaries_dict['scalar_summaries'].items():
    tf.summary.scalar(key, scalars)
  # Adds image summaries.
  for key, images in summaries_dict['image_summaries'].items():
    tf.summary.image(key, tf.clip_by_value(images, 0.0, 1.0))
    tf.summary.histogram(key + '_h', images)


def train_loop(
    strategy: tf.distribute.Strategy,
    train_set: tf.data.Dataset,
    create_model_fn: Callable[..., tf.keras.Model],
    create_losses_fn: Callable[..., Dict[str, Tuple[Callable[..., tf.Tensor],
                                                    Callable[..., tf.Tensor]]]],
    create_optimizer_fn: Callable[..., tf.keras.optimizers.Optimizer],
    distributed_train_step_fn: Callable[[
        tf.distribute.Strategy, Dict[str, tf.Tensor], tf.keras.Model, Dict[
            str,
            Tuple[Callable[..., tf.Tensor],
                  Callable[..., tf.Tensor]]], tf.keras.optimizers.Optimizer, int
    ], Dict[str, Any]],
    eval_loop_fn: Callable[..., None],
    create_metrics_fn: Callable[..., Dict[str, tf.keras.metrics.Metric]],
    eval_folder: Dict[str, Any],
    eval_datasets: Dict[str, tf.data.Dataset],
    summary_writer_fn: Callable[[Dict[str, Any]], None],
    train_folder: str,
    saved_model_folder: str,
    num_iterations: int,
    save_summaries_frequency: int = 500,
    save_checkpoint_frequency: int = 500,
    checkpoint_max_to_keep: int = 10,
    checkpoint_save_every_n_hours: float = 2.,
    timing_frequency: int = 100,
    logging_frequency: int = 10):
  """A Tensorflow 2 eager mode training loop.

  Args:
    strategy: A Tensorflow distributed strategy.
    train_set: A tf.data.Dataset to loop through for training.
    create_model_fn: A callable that returns a tf.keras.Model.
    create_losses_fn: A callable that returns a tf.keras.losses.Loss.
    create_optimizer_fn: A callable that returns a
      tf.keras.optimizers.Optimizer.
    distributed_train_step_fn: A callable that takes a distribution strategy, a
      Dict[Text, tf.Tensor] holding the batch of training data, a
      tf.keras.Model, a tf.keras.losses.Loss, a tf.keras.optimizers.Optimizer,
      iteartion number to sample a weight value to loos functions,
      and returns a dictionary to be passed to the summary_writer_fn.
    eval_loop_fn: Eval loop function.
    create_metrics_fn: create_metric_fn.
    eval_folder: A path to where the summary event files and checkpoints will be
      saved.
    eval_datasets: A dictionary of evalution tf.data.Dataset to loop through for
      evaluation.
    summary_writer_fn: A callable that takes the output of
      distributed_train_step_fn and writes summaries to be visualized in
      TensorBoard.
    train_folder: A path to where the summaries event files and checkpoints
      will be saved.
    saved_model_folder: A path to where the saved models are stored.
    num_iterations: An integer, the number of iterations to train for.
    save_summaries_frequency: The iteration frequency with which summaries are
      saved.
    save_checkpoint_frequency: The iteration frequency with which model
      checkpoints are saved.
    checkpoint_max_to_keep: The maximum number of checkpoints to keep.
    checkpoint_save_every_n_hours: The frequency in hours to keep checkpoints.
    timing_frequency: The iteration frequency with which to log timing.
    logging_frequency: How often to output with logging.info().
  """
  logging.info('Creating training tensorboard summaries ...')
  summary_writer = tf.summary.create_file_writer(train_folder)

  if eval_datasets is not None:
    logging.info('Creating eval tensorboard summaries ...')
    eval_summary_writer = tf.summary.create_file_writer(eval_folder)

  train_set = strategy.experimental_distribute_dataset(train_set)
  with strategy.scope():
    logging.info('Building model ...')
    model = create_model_fn()
    loss_functions = create_losses_fn()
    optimizer = create_optimizer_fn()
    if eval_datasets is not None:
      metrics = create_metrics_fn()

  logging.info('Creating checkpoint ...')
  checkpoint = tf.train.Checkpoint(
      model=model,
      optimizer=optimizer,
      step=optimizer.iterations,
      epoch=tf.Variable(0, dtype=tf.int64, trainable=False),
      training_finished=tf.Variable(False, dtype=tf.bool, trainable=False))

  logging.info('Restoring old model (if exists) ...')
  checkpoint_manager = tf.train.CheckpointManager(
      checkpoint,
      directory=train_folder,
      max_to_keep=checkpoint_max_to_keep,
      keep_checkpoint_every_n_hours=checkpoint_save_every_n_hours)

  with strategy.scope():
    if checkpoint_manager.latest_checkpoint:
      checkpoint.restore(checkpoint_manager.latest_checkpoint)

  logging.info('Creating Timer ...')
  timer = tf.estimator.SecondOrStepTimer(every_steps=timing_frequency)
  timer.update_last_triggered_step(optimizer.iterations.numpy())

  logging.info('Training on devices: %s.', [
      el.name.split('/physical_device:')[-1]
      for el in tf.config.get_visible_devices()
  ])

  # Re-assign training_finished=False, in case we restored a checkpoint.
  checkpoint.training_finished.assign(False)
  while optimizer.iterations.numpy() < num_iterations:
    for i_batch, batch in enumerate(train_set):
      summary_writer.set_as_default()
      iterations = optimizer.iterations.numpy()

      if iterations % logging_frequency == 0:
        # Log epoch, total iterations and batch index.
        logging.info('epoch %d; iterations %d; i_batch %d',
                     checkpoint.epoch.numpy(), iterations,
                     i_batch)

      # Break if the number of iterations exceeds the max.
      if iterations >= num_iterations:
        break

      # Compute distributed step outputs.
      distributed_step_outputs = distributed_train_step_fn(
          strategy, batch, model, loss_functions, optimizer, iterations)

      # Save checkpoint, and optionally run the eval loops.
      if iterations % save_checkpoint_frequency == 0:
        checkpoint_manager.save(checkpoint_number=iterations)
        if eval_datasets is not None:
          eval_loop_fn(
              strategy=strategy,
              eval_base_folder=eval_folder,
              model=model,
              metrics=metrics,
              datasets=eval_datasets,
              summary_writer=eval_summary_writer,
              checkpoint_step=iterations)

      # Write summaries.
      if iterations % save_summaries_frequency == 0:
        tf.summary.experimental.set_step(step=iterations)
        summary_writer_fn(distributed_step_outputs)
        tf.summary.scalar('learning_rate',
                          optimizer.learning_rate(iterations).numpy())

      # Log steps/sec.
      if timer.should_trigger_for_step(iterations):
        elapsed_time, elapsed_steps = timer.update_last_triggered_step(
            iterations)
        if elapsed_time is not None:
          steps_per_second = elapsed_steps / elapsed_time
          tf.summary.scalar(
              'steps/sec', steps_per_second, step=optimizer.iterations)

    # Increment epoch.
    checkpoint.epoch.assign_add(1)

  # Assign training_finished variable to True after training is finished and
  # save the last checkpoint.
  checkpoint.training_finished.assign(True)
  checkpoint_manager.save(checkpoint_number=optimizer.iterations.numpy())

  # Generate a saved model.
  model.save(saved_model_folder)


def train(strategy: tf.distribute.Strategy, train_folder: str,
          saved_model_folder: str, n_iterations: int,
          create_model_fn: Callable[..., tf.keras.Model],
          create_losses_fn: Callable[..., Dict[str,
                                               Tuple[Callable[..., tf.Tensor],
                                                     Callable[...,
                                                              tf.Tensor]]]],
          create_metrics_fn: Callable[..., Dict[str, tf.keras.metrics.Metric]],
          dataset: tf.data.Dataset,
          learning_rate: tf.keras.optimizers.schedules.LearningRateSchedule,
          eval_loop_fn: Callable[..., None],
          eval_folder: str,
          eval_datasets: Dict[str, tf.data.Dataset]):
  """Training function that is strategy agnostic.

  Args:
    strategy: A Tensorflow distributed strategy.
    train_folder: A path to where the summaries event files and checkpoints
      will be saved.
    saved_model_folder: A path to where the saved models are stored.
    n_iterations: An integer, the number of iterations to train for.
    create_model_fn: A callable that returns tf.keras.Model.
    create_losses_fn: A callable that returns the losses.
    create_metrics_fn: A function that returns the metrics dictionary.
    dataset: The tensorflow dataset object.
    learning_rate: Keras learning rate schedule object.
    eval_loop_fn: eval loop function.
    eval_folder: A path to where eval summaries event files and checkpoints
      will be saved.
    eval_datasets: The tensorflow evaluation dataset objects.
  """
  train_loop(
      strategy=strategy,
      train_set=dataset,
      create_model_fn=create_model_fn,
      create_losses_fn=create_losses_fn,
      create_optimizer_fn=functools.partial(
          tf.keras.optimizers.Adam, learning_rate=learning_rate),
      distributed_train_step_fn=_distributed_train_step,
      eval_loop_fn=eval_loop_fn,
      create_metrics_fn=create_metrics_fn,
      eval_folder=eval_folder,
      eval_datasets=eval_datasets,
      summary_writer_fn=_summary_writer,
      train_folder=train_folder,
      saved_model_folder=saved_model_folder,
      num_iterations=n_iterations,
      save_summaries_frequency=3000,
      save_checkpoint_frequency=3000)


def get_strategy(mode) -> tf.distribute.Strategy:
  """Creates a distributed strategy."""
  strategy = None
  if mode == 'cpu':
    strategy = tf.distribute.OneDeviceStrategy('/cpu:0')
  elif mode == 'gpu':
    strategy = tf.distribute.MirroredStrategy()
  else:
    raise ValueError('Unsupported distributed mode.')
  return strategy