Spaces:
Sleeping
Sleeping
Upload 2 files
Browse filesInitial Files for gradio
- app.py +63 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import torch
|
4 |
+
from torch import autocast
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
import gradio as gr # Import Gradio
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
# Load the environment variables from .env
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
class StableBuddyApp:
|
13 |
+
def __init__(self):
|
14 |
+
# Set up the Stable Diffusion pipeline
|
15 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
|
18 |
+
# Get the auth_token from the environment variable
|
19 |
+
auth_token = os.getenv("AUTH_TOKEN")
|
20 |
+
if not auth_token:
|
21 |
+
raise ValueError("AUTH_TOKEN environment variable is not set.")
|
22 |
+
|
23 |
+
# Use float16 and fp16 so that stable diffusion can work on 4GB VRAM
|
24 |
+
self.pipe = StableDiffusionPipeline.from_pretrained(
|
25 |
+
model_id, revision='fp16', torch_dtype=torch.float16, use_auth_token=auth_token
|
26 |
+
)
|
27 |
+
self.pipe.to(device)
|
28 |
+
|
29 |
+
def generate_image(self, prompt):
|
30 |
+
"""Generate an image based on the prompt."""
|
31 |
+
try:
|
32 |
+
with autocast("cuda"):
|
33 |
+
image = self.pipe(prompt, guidance_scale=8.5).images[0]
|
34 |
+
|
35 |
+
# Save the generated image temporarily
|
36 |
+
image_path = 'data/generated_image.png'
|
37 |
+
image.save(image_path)
|
38 |
+
|
39 |
+
return image_path # Return the image path for Gradio to display
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
print(f"An error occurred: {e}")
|
43 |
+
return None # In case of an error, return None
|
44 |
+
|
45 |
+
# Create an instance of the StableBuddyApp
|
46 |
+
stable_buddy_app = StableBuddyApp()
|
47 |
+
|
48 |
+
# Create Gradio Interface with separate buttons
|
49 |
+
def generate_and_download(prompt):
|
50 |
+
image_path = stable_buddy_app.generate_image(prompt)
|
51 |
+
return image_path, image_path # Return image for display and for download link
|
52 |
+
|
53 |
+
# Create Gradio Interface
|
54 |
+
iface = gr.Interface(
|
55 |
+
fn=generate_and_download, # Function to call
|
56 |
+
inputs=gr.Textbox(label="Enter Prompt"), # Text input for the prompt
|
57 |
+
outputs=[gr.Image(type="filepath", label="Generated Image"), gr.File(label="Download Image")], # Two outputs for display and download
|
58 |
+
title="Stable Buddy",
|
59 |
+
description="Generate images using Stable Diffusion."
|
60 |
+
)
|
61 |
+
|
62 |
+
# Launch the Gradio app
|
63 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
diffusers
|
3 |
+
gradio
|
4 |
+
python-dotenv
|
5 |
+
Pillow
|