import json
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    TABLE_DESC,
)
from src.display.css_html_js import custom_css
from src.display.formatting import styled_error, styled_message, styled_warning, model_hyperlink
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    TYPES_LITE,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from captcha.image import ImageCaptcha
from PIL import Image
import random, string
import matplotlib.pyplot as plt


original_df = None
leaderboard_df = None


def restart_space():
    API.restart_space(repo_id=REPO_ID, token=TOKEN)

def add_model_hyperlinks(row):
    if row["Model URL"] is None or row["Model URL"] == "":
        return row["Model"]
    else:
        return model_hyperlink(row["Model URL"], row["Model"])

def download_data():
    global original_df
    global leaderboard_df
    try:
        print(EVAL_REQUESTS_PATH,QUEUE_REPO)
        snapshot_download(
            repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
        )
    except Exception:
        restart_space()
    try:
        print(EVAL_RESULTS_PATH, RESULTS_REPO)
        snapshot_download(
            repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
        )
    except Exception:
        restart_space()


    _, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
    leaderboard_df = original_df.copy()
    leaderboard_df["Model"] = leaderboard_df.apply(add_model_hyperlinks, axis=1)
    leaderboard_df.sort_values(by=["Aggregate Score"], ascending=False, inplace=True)

download_data()


"""
(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
"""

# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    query: str,
):
    columns += " " # The dataframe does not display the last column - BUG in gradio?
    #filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
    filtered_df = filter_queries(query, hidden_df)
    filtered_df["Model"] = filtered_df.apply(add_model_hyperlinks, axis=1)
    df = select_columns(filtered_df, columns)
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    print(query)
    return df[(df[AutoEvalColumn.eval_name.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        #AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.eval_name.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns] #+ [AutoEvalColumn.dummy.name]
    ]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "" and query is not None:
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[AutoEvalColumn.eval_name.name]
            )

    return filtered_df


def filter_models(
    df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
    # Show all models
    #if show_deleted:
    #    filtered_df = df
    #else:  # Show only still on the hub models
    #    filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]

    filtered_df = df

    #type_emoji = [t[0] for t in type_query]
    #filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
    #filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    #numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
    #params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
    #mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    #filtered_df = filtered_df.loc[mask]

    return filtered_df


def validate_upload(input):
    try:
        with open(input, mode="r") as f:
            data = json.load(f)
            #raise gr.Error("Cannot divide by zero!")
    except:
        raise gr.Error("Cannot parse file")


def generate_captcha(width=300, height=220, length=4):
    text = ''.join(random.choices(string.ascii_uppercase + string.digits, k=length))
    captcha_obj = ImageCaptcha(width, height)
    data = captcha_obj.generate(text)
    image = Image.open(data)
    return image, text


def validate_captcha(input, text, img):
    img, new_text = generate_captcha()
    if input.lower() == text.lower():
        return True, styled_message("Correct! You can procede with your submission."), new_text, img, ""
    return False, styled_error("Incorrect! Please retry with the new code."), new_text, img, ""



demo = gr.Blocks(css=custom_css, theme=gr.themes.Default(primary_hue=gr.themes.colors.orange, secondary_hue=gr.themes.colors.orange))
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 Leaderboard", elem_id="llm-benchmark-tab-table", id=0) as tb_board:
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if not c.hidden and not c.never_hidden # and not c.dummy  # Causes errors
                            ],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                
            gr.Markdown(TABLE_DESC, elem_classes="markdown-text")
            leaderboard_table = gr.Dataframe(
                value=leaderboard_df[
                    [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value
                ],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES_LITE,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                wrap=False,
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.Dataframe(
                value=original_df[COLS],
                headers=COLS,
                datatype=TYPES,
                visible=False,
            )
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    search_bar,
                ],
                leaderboard_table,
            )
            shown_columns.change(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    search_bar,
                ],
                leaderboard_table,
                queue=True,
            )

            model_num = len(original_df)
            graph_df = original_df.drop(columns=[" ", "Precision", "Model URL"]).set_index("Model").T
            graph_ax = graph_df.plot(
                kind="barh", 
                title="Graphical performance comparison", 
                xlabel="Accuracy [%]", 
                ylabel="Model",
                width=0.9,
                figsize=(15, 7 + 2*model_num),
            )
            graph_ax.invert_yaxis()
            for container in graph_ax.containers:
                graph_ax.bar_label(container, fontsize=8, fmt="%.1f")
            graph_ax.legend(loc='center left', bbox_to_anchor=(1.01, 0.95))
            plt.tight_layout(rect=[0, 0, 0.95, 1])

            plot = gr.Plot(graph_ax.get_figure(), label="Graphical performance comparison")
        with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
                """
                with gr.Column():

                    with gr.Accordion(
                        f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    """
            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    with gr.Group():
                        model_name_textbox = gr.Textbox(label="Model name", info="Please avoid using the slash (/) character")
                        #precision = gr.Radio(["bfloat16", "float16", "4bit"], label="Precision", info="What precision are you using for inference?")
                        precision = gr.Dropdown(
                            choices=[i.value.name for i in Precision if i != Precision.Unknown],
                            label="Precision",
                            multiselect=False,
                            value="other",
                            interactive=True,
                            info="What weight precision were you using during the evaluation?"
                        )
                        hf_model_id = gr.Textbox(label="Model link (Optional)", info="URL to the model's Hugging Face repository, or it's official website")
                        contact_email = gr.Textbox(label="Your E-Mail")
                    file_input = gr.File(file_count="single", interactive=True, label="Upload json file with evaluation results", file_types=['.json', '.jsonl'])
                    file_input.upload(validate_upload, file_input)
                    #upload_button = gr.UploadButton("Upload json", file_types=['.json'])
                    #upload_button.upload(validate_upload, upload_button, file_input)

                    with gr.Group():
                        captcha_correct = gr.State(False)
                        text = gr.State("")
                        image, text.value = generate_captcha()
                        captcha_img = gr.Image(
                            image,
                            label="Prove your humanity",
                            interactive=False,
                            show_download_button=False,
                            show_fullscreen_button=False,
                            show_share_button=False,
                        )
                        captcha_input = gr.Textbox(placeholder="Enter the text in the image above", show_label=False, container=False)
                        check_button = gr.Button("Validate", interactive=True)
                        captcha_result = gr.Markdown()
                        check_button.click(
                            fn = validate_captcha,
                            inputs = [captcha_input, text, captcha_img],
                            outputs = [captcha_correct, captcha_result, text, captcha_img, captcha_input],
                        )

                    submit_button = gr.Button("Submit Eval", interactive=True)
                    submission_result = gr.Markdown()
                    submit_button.click(
                        fn = add_new_eval,
                        inputs = [
                            model_name_textbox,
                            file_input,
                            precision,
                            hf_model_id,
                            contact_email,
                            captcha_correct,
                        ],
                        outputs = [submission_result, captcha_correct],
                    )

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=14,
                elem_id="citation-button",
                show_copy_button=True,
            )
    
    demo.load(
        fn=generate_captcha,
        outputs=[captcha_img, text]
    )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=43200)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(server_name="0.0.0.0")