import gradio as gr from transformers import pipeline # Load your model from Hugging Face model_name = "CIRCL/vulnerability-severity-classification-roberta-base" classifier = pipeline("text-classification", model=model_name, return_all_scores=True) # Define severity labels severity_labels = ["Low", "Medium", "High", "Critical"] def classify_text(text): results = classifier(text)[0] # Extract the first (and only) result scores = {severity_labels[i]: round(r["score"], 4) for i, r in enumerate(results)} return scores # Create the Gradio interface interface = gr.Interface( fn=classify_text, inputs=gr.Textbox(lines=5, placeholder="Enter vulnerability description..."), outputs=gr.Label(num_top_classes=4), # Display all scores title="Vulnerability Severity Classification", description="Enter a vulnerability description, and the model will classify its severity level." ) # Launch the app interface.launch()