Spaces:
Running
Running
Upload eval_pipeline.py
Browse files- eval_pipeline.py +86 -0
eval_pipeline.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.model_selection import train_test_split
|
3 |
+
from google.colab import drive
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import Dataset, DataLoader
|
6 |
+
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
|
7 |
+
from sklearn.metrics import accuracy_score, classification_report
|
8 |
+
|
9 |
+
dataset_path = ""
|
10 |
+
model_path = ""
|
11 |
+
|
12 |
+
news_df = pd.read_csv(dataset_path)
|
13 |
+
|
14 |
+
X = news_df['title']
|
15 |
+
y = news_df['labels']
|
16 |
+
|
17 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
|
18 |
+
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25, random_state=1) # 0.25 x 0.8 = 0.2
|
19 |
+
|
20 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
21 |
+
|
22 |
+
|
23 |
+
def tokenize_data(texts, tokenizer, max_len=128):
|
24 |
+
return tokenizer(
|
25 |
+
list(texts),
|
26 |
+
padding=True,
|
27 |
+
truncation=True,
|
28 |
+
max_length=max_len,
|
29 |
+
return_tensors="pt"
|
30 |
+
)
|
31 |
+
|
32 |
+
# Tokenize the training and test datasets
|
33 |
+
train_encodings = tokenize_data(X_train, tokenizer)
|
34 |
+
test_encodings = tokenize_data(X_test, tokenizer)
|
35 |
+
|
36 |
+
# Create a custom Dataset class
|
37 |
+
class NewsDataset(Dataset):
|
38 |
+
def __init__(self, encodings, labels):
|
39 |
+
self.encodings = encodings
|
40 |
+
self.labels = labels
|
41 |
+
|
42 |
+
def __len__(self):
|
43 |
+
return len(self.labels)
|
44 |
+
|
45 |
+
def __getitem__(self, idx):
|
46 |
+
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
47 |
+
item['labels'] = torch.tensor(self.labels[idx])
|
48 |
+
return item
|
49 |
+
|
50 |
+
train_dataset = NewsDataset(train_encodings, y_train.tolist())
|
51 |
+
test_dataset = NewsDataset(test_encodings, y_test.tolist())
|
52 |
+
|
53 |
+
# Load DataLoader for batching
|
54 |
+
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
55 |
+
test_loader = DataLoader(test_dataset, batch_size=16)
|
56 |
+
|
57 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
58 |
+
model.load_state_dict(torch.load(model_path))
|
59 |
+
|
60 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
61 |
+
model.to(device)
|
62 |
+
|
63 |
+
# Define optimizer and scheduler
|
64 |
+
# optimizer = AdamW(model.parameters(), lr=5e-5)
|
65 |
+
# num_training_steps = len(train_loader) * 4 # Assume 4 epochs
|
66 |
+
# lr_scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps)
|
67 |
+
|
68 |
+
# Evaluate the model
|
69 |
+
def evaluate_model(model, test_loader):
|
70 |
+
model.eval()
|
71 |
+
y_true, y_pred = [], []
|
72 |
+
with torch.no_grad():
|
73 |
+
for batch in test_loader:
|
74 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
75 |
+
outputs = model(**batch)
|
76 |
+
logits = outputs.logits
|
77 |
+
predictions = torch.argmax(logits, dim=-1)
|
78 |
+
y_true.extend(batch['labels'].tolist())
|
79 |
+
y_pred.extend(predictions.tolist())
|
80 |
+
return y_true, y_pred
|
81 |
+
|
82 |
+
y_true, y_pred = evaluate_model(model, test_loader)
|
83 |
+
|
84 |
+
# Print evaluation metrics
|
85 |
+
print(f"Accuracy: {accuracy_score(y_true, y_pred):.4f}")
|
86 |
+
print("Classification Report:\n", classification_report(y_true, y_pred))
|