--- pinned: true sdk: static --- ## Evaluation Pipeline # Use eval_pipeline.py or the raw version of the code below to evaluate the model. Make sure to set the dataset and model path. ``` import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, classification_report import torch from torch.utils.data import Dataset, DataLoader from transformers import BertTokenizer, BertForSequenceClassification, AdamW from transformers import get_scheduler from datasets import load_dataset data_path = "" model_path = "" data_files = {"train": "train_data.csv", "validation": "val_data.csv", "test": "test_data.csv"} dataset_train = load_dataset(data_path, data_files=data_files, split="train") dataset_val = load_dataset(data_path, data_files=data_files, split="validation") dataset_test = load_dataset(data_path, data_files=data_files, split="test") train_loader = DataLoader(dataset_train, batch_size=16, shuffle=True) test_loader = DataLoader(dataset_test, batch_size=16) class CustomModel: def __init__(self, model_name="bert-base-uncased", num_labels=2, lr=5e-5, epochs=4, max_len=128): """ Initialize the custom model with tokenizer, optimizer, scheduler, and training parameters. Args: model_name (str): Name of the pretrained BERT model. num_labels (int): Number of labels for the classification task. lr (float): Learning rate for the optimizer. epochs (int): Number of epochs for training. max_len (int): Maximum token length for sequences. """ self.model_name = model_name self.num_labels = num_labels self.epochs = epochs self.max_len = max_len # Load tokenizer and model self.tokenizer = BertTokenizer.from_pretrained(model_name) self.model = BertForSequenceClassification.from_pretrained(model_name, num_labels=num_labels) # Define optimizer self.optimizer = AdamW(self.model.parameters(), lr=lr) # Scheduler placeholder self.scheduler = None # Device setup self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") self.model.to(self.device) def setup_scheduler(self, train_loader): """ Setup a learning rate scheduler based on training data. Args: train_loader (DataLoader): Training data loader. """ num_training_steps = len(train_loader) * self.epochs self.scheduler = get_scheduler( "linear", optimizer=self.optimizer, num_warmup_steps=0, num_training_steps=num_training_steps ) def tokenize_batch(self, texts): """ Tokenize a batch of text inputs. Args: texts (list[str]): List of text strings to tokenize. Returns: dict: Tokenized inputs with attention masks and input IDs. """ return self.tokenizer( texts, padding=True, truncation=True, max_length=self.max_len, return_tensors="pt" ) def train(self, train_loader): """ Train the model with raw text inputs and labels. Args: train_loader (DataLoader): Training data loader containing text and labels. """ self.model.train() for epoch in range(self.epochs): epoch_loss = 0 for batch in train_loader: texts, labels = batch['title'], batch['labels'] # Assuming each batch is (texts, labels) labels = labels.to(self.device) # Tokenize the batch tokenized_inputs = self.tokenize_batch(texts) tokenized_inputs = {key: val.to(self.device) for key, val in tokenized_inputs.items()} tokenized_inputs['labels'] = labels # Forward pass and optimization outputs = self.model(**tokenized_inputs) loss = outputs.loss loss.backward() self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() epoch_loss += loss.item() print(f"Epoch {epoch + 1}/{self.epochs}, Loss: {epoch_loss / len(train_loader):.4f}") def evaluate(self, test_loader): """ Evaluate the model with raw text inputs and labels. Args: test_loader (DataLoader): Test data loader containing text and labels. Returns: Tuple: True labels and predicted labels. """ self.model.eval() y_true, y_pred = [], [] with torch.no_grad(): for batch in test_loader: texts, labels = batch['title'], batch['labels'] # Assuming each batch is (texts, labels) labels = labels.to(self.device) # Tokenize the batch tokenized_inputs = self.tokenize_batch(texts) tokenized_inputs = {key: val.to(self.device) for key, val in tokenized_inputs.items()} # Forward pass outputs = self.model(**tokenized_inputs) logits = outputs.logits predictions = torch.argmax(logits, dim=-1) y_true.extend(labels.tolist()) y_pred.extend(predictions.tolist()) return y_true, y_pred def save_model(self, save_path): """ Save the model locally in Hugging Face format. Args: save_path (str): Path to save the model. """ self.model.save_pretrained(save_path) self.tokenizer.save_pretrained(save_path) def push_model(self, repo_name): """ Push the model to the Hugging Face Hub. Args: repo_name (str): Repository name on Hugging Face Hub. """ self.model.push_to_hub(repo_name) self.tokenizer.push_to_hub(repo_name) custom_model = CustomModel(model_name=model_path, num_labels=2, lr=5e-5, epochs=4) y_true, y_pred = custom_model.evaluate(test_loader) print(f"Accuracy: {accuracy_score(y_true, y_pred):.4f}") print("Classification Report:\n", classification_report(y_true, y_pred)) ```