File size: 13,884 Bytes
e738e15
 
 
 
 
 
ad78086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e738e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e11f9
e738e15
37e11f9
e738e15
 
 
 
 
 
 
 
 
 
 
 
 
 
84afff1
 
 
 
 
e738e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e11f9
 
 
e738e15
37e11f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e738e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import struct
from enum import IntEnum
from fsspec.spec import AbstractBufferedFile
from typing import Any, Iterator, NamedTuple


class TokenType(IntEnum):
    NORMAL       = 1
    UNKNOWN      = 2
    CONTROL      = 3
    USER_DEFINED = 4
    UNUSED       = 5
    BYTE         = 6


class LlamaFileType(IntEnum):
    ALL_F32              = 0
    MOSTLY_F16           = 1
    MOSTLY_Q4_0          = 2
    MOSTLY_Q4_1          = 3
    MOSTLY_Q4_1_SOME_F16 = 4
    MOSTLY_Q4_2          = 5
    MOSTLY_Q4_3          = 6
    MOSTLY_Q8_0          = 7
    MOSTLY_Q5_0          = 8
    MOSTLY_Q5_1          = 9
    MOSTLY_Q2_K          = 10
    MOSTLY_Q3_K_S        = 11
    MOSTLY_Q3_K_M        = 12
    MOSTLY_Q3_K_L        = 13
    MOSTLY_Q4_K_S        = 14
    MOSTLY_Q4_K_M        = 15
    MOSTLY_Q5_K_S        = 16
    MOSTLY_Q5_K_M        = 17
    MOSTLY_Q6_K          = 18
    MOSTLY_IQ2_XXS       = 19
    MOSTLY_IQ2_XS        = 20
    MOSTLY_Q2_K_S        = 21
    MOSTLY_IQ3_XS        = 22
    MOSTLY_IQ3_XXS       = 23
    MOSTLY_IQ1_S         = 24
    MOSTLY_IQ4_NL        = 25
    MOSTLY_IQ3_S         = 26
    MOSTLY_IQ3_M         = 27
    MOSTLY_IQ2_S         = 28
    MOSTLY_IQ2_M         = 29
    MOSTLY_IQ4_XS        = 30
    MOSTLY_IQ1_M         = 31
    MOSTLY_BF16          = 32
    MOSTLY_Q4_0_4_4      = 33
    MOSTLY_Q4_0_4_8      = 34
    MOSTLY_Q4_0_8_8      = 35
    MOSTLY_TQ1_0         = 36
    MOSTLY_TQ2_0         = 37


class GGUFValueType(IntEnum):
    UINT8   = 0
    INT8    = 1
    UINT16  = 2
    INT16   = 3
    UINT32  = 4
    INT32   = 5
    FLOAT32 = 6
    BOOL    = 7
    STRING  = 8
    ARRAY   = 9
    UINT64  = 10
    INT64   = 11
    FLOAT64 = 12


standard_metadata = {
    "general.type": (GGUFValueType.STRING, "model"),
    "general.architecture": (GGUFValueType.STRING, "llama"),
    "general.quantization_version": (GGUFValueType.UINT32, 2),
    "general.alignment": (GGUFValueType.UINT32, 32),
    "general.file_type": (GGUFValueType.UINT32, 0),
    "general.name": (GGUFValueType.STRING, ""),
    "general.author": (GGUFValueType.STRING, ""),
    "general.version": (GGUFValueType.STRING, ""),
    "general.organization": (GGUFValueType.STRING, ""),
    "general.finetune": (GGUFValueType.STRING, ""),
    "general.basename": (GGUFValueType.STRING, ""),
    "general.description": (GGUFValueType.STRING, ""),
    "general.quantized_by": (GGUFValueType.STRING, ""),
    "general.size_label": (GGUFValueType.STRING, ""),
    "general.license": (GGUFValueType.STRING, ""),
    "general.license.name": (GGUFValueType.STRING, ""),
    "general.license.link": (GGUFValueType.STRING, ""),
    "general.url": (GGUFValueType.STRING, ""),
    "general.doi": (GGUFValueType.STRING, ""),
    "general.uuid": (GGUFValueType.STRING, ""),
    "general.repo_url": (GGUFValueType.STRING, ""),
    "general.source.url": (GGUFValueType.STRING, ""),
    "general.source.doi": (GGUFValueType.STRING, ""),
    "general.source.uuid": (GGUFValueType.STRING, ""),
    "general.source.repo_url": (GGUFValueType.STRING, ""),
    "general.tags": (GGUFValueType.STRING, []),
    "general.languages": (GGUFValueType.STRING, []),
    "general.datasets": (GGUFValueType.STRING, []),
    "split.no": (GGUFValueType.UINT16, 0),
    "split.count": (GGUFValueType.UINT16, 0),
    "split.tensors.count": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.model": (GGUFValueType.STRING, "gpt2"),
    "tokenizer.ggml.pre": (GGUFValueType.STRING, "llama-bpe"),
    "tokenizer.ggml.tokens": (GGUFValueType.STRING, []),
    "tokenizer.ggml.token_type": (GGUFValueType.INT32, []),
    "tokenizer.ggml.scores": (GGUFValueType.FLOAT32, []),
    "tokenizer.ggml.merges": (GGUFValueType.STRING, []),
    "tokenizer.ggml.bos_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.eos_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.unknown_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.seperator_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.padding_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.cls_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.mask_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.add_bos_token": (GGUFValueType.BOOL, False),
    "tokenizer.ggml.add_eos_token": (GGUFValueType.BOOL, False),
    "tokenizer.ggml.add_space_prefix": (GGUFValueType.BOOL, False),
    "tokenizer.ggml.remove_extra_whitespaces": (GGUFValueType.BOOL, False),
    "tokenizer.chat_template": (GGUFValueType.STRING, ""),
    "tokenizer.chat_template.rag": (GGUFValueType.STRING, ""),
    "tokenizer.chat_template.tool_use": (GGUFValueType.STRING, ""),
    "tokenizer.chat_templates": (GGUFValueType.STRING, []),
    "tokenizer.ggml.prefix_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.suffix_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.middle_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.eot_token_id": (GGUFValueType.UINT32, 0),
    "tokenizer.ggml.eom_token_id": (GGUFValueType.UINT32, 0),
    "quantize.imatrix.file": (GGUFValueType.STRING, ""),
    "quantize.imatrix.dataset": (GGUFValueType.STRING, ""),
    "quantize.imatrix.entries_count": (GGUFValueType.INT32, 0),
    "quantize.imatrix.chunks_count": (GGUFValueType.INT32, 0),
}


gguf_scalar_size: dict[GGUFValueType, int] = {
    GGUFValueType.UINT8:   1,
    GGUFValueType.INT8:    1,
    GGUFValueType.UINT16:  2,
    GGUFValueType.INT16:   2,
    GGUFValueType.UINT32:  4,
    GGUFValueType.INT32:   4,
    GGUFValueType.FLOAT32: 4,
    GGUFValueType.BOOL:    1,
    GGUFValueType.UINT64:  8,
    GGUFValueType.INT64:   8,
    GGUFValueType.FLOAT64: 8,
}


gguf_scalar_pack: dict[GGUFValueType, str] = {
    GGUFValueType.UINT8:   "B",
    GGUFValueType.INT8:    "b",
    GGUFValueType.UINT16:  "H",
    GGUFValueType.INT16:   "h",
    GGUFValueType.UINT32:  "I",
    GGUFValueType.INT32:   "i",
    GGUFValueType.FLOAT32: "f",
    GGUFValueType.BOOL:    "?",
    GGUFValueType.UINT64:  "Q",
    GGUFValueType.INT64:   "q",
    GGUFValueType.FLOAT64: "d",
}


class GGUFData(NamedTuple):
    type: GGUFValueType | None
    value: Any
    data: bytes


class HuggingGGUFstream:
    fp: AbstractBufferedFile
    header: dict[str, GGUFData]
    metadata: dict[str, GGUFData]
    endian: str
    metaend: int
    filesize: int

    def __init__(
        self,
        fp: AbstractBufferedFile,
    ) -> None:
        self.fp = fp
        self.header = {}
        self.metadata = {}
        self.endian = '<'
        self.alignment = 32
        self.metaend = 0
        self.offset = 0
        self.filesize = fp.details.get('size')

        if (data := self.fp.read(4)) != b'GGUF':
            raise TypeError('File is not a GGUF')

        self.header['magic'] = GGUFData(
            type = None,
            value = None,
            data = data,
        )

        data = self._read_field(GGUFValueType.UINT32)
        if data.value != 3:
            if data.value == 3 << 24:
                data = GGUFData(
                    type = data.type,
                    value = 3,
                    data = data.data,
                )
                self.endian = '>'
            else:
                raise TypeError('Unsupported GGUF version')
        self.header['version'] = data

        data = self._read_field(GGUFValueType.UINT64)
        self.header['tensors'] = data

        data = self._read_field(GGUFValueType.UINT64)
        self.header['metadata'] = data

    def _unpack_field(
        self,
        buffer: bytes,
        field_type: GGUFValueType,
        repeat: int = 1,
    ) -> Any:
        value = struct.unpack(f'{self.endian}{repeat}{gguf_scalar_pack.get(field_type)}', buffer)
        return value[0] if repeat == 1 else value

    def _pack_field(
        self,
        field_type: GGUFValueType,
        *values,
    ) -> bytes:
        return struct.pack(f'{self.endian}{len(values)}{gguf_scalar_pack.get(field_type)}', *values)

    def _pack_value(
        self,
        val_type: GGUFValueType,
        value: Any,
    ) -> bytes:
        if isinstance(value, list):
            data = self._pack_field(GGUFValueType.UINT32, val_type)
            data += self._pack_field(GGUFValueType.UINT64, len(value))

        if val_type == GGUFValueType.ARRAY:
            raise TypeError('Array of arrays currently unsupported')
        elif val_type == GGUFValueType.STRING:
            if isinstance(value, list):
                for v in value:
                    buf = str(v).encode('utf-8')
                    data += self._pack_field(GGUFValueType.UINT64, len(buf))
                    data += buf
            else:
                buf = str(value).encode('utf-8')
                data = self._pack_field(GGUFValueType.UINT64, len(buf))
                data += buf
        elif val_type in gguf_scalar_pack:
            if isinstance(value, list):
                data += self._pack_field(val_type, *value)
            else:
                data = self._pack_field(val_type, value)
        else:
            raise TypeError('Unknown metadata type')

        return data

    def _read_field(
        self,
        field_type: GGUFValueType,
        repeat: int = 1,
    ) -> GGUFData:
        data = self.fp.read(gguf_scalar_size.get(field_type) * repeat)
        value = self._unpack_field(data, field_type, repeat = repeat)

        return GGUFData(
            type = field_type,
            value = value,
            data = data,
        )

    def _read_value(
        self,
        val_type: GGUFValueType,
    ) -> GGUFData:
        if val_type == GGUFValueType.ARRAY:
            data = self._read_field(GGUFValueType.UINT32)
            val_len = self._read_field(GGUFValueType.UINT64)

            if data.value in gguf_scalar_pack:
                val = self._read_field(data.value, repeat = val_len.value)
                data = GGUFData(
                    type = val.type,
                    value = list(val.value),
                    data = data.data + val_len.data + val.data,
                )
            else:
                v = []
                d = [data.data, val_len.data]

                for _ in range(val_len.value):
                    val = self._read_value(data.value)
                    d.append(val.data)
                    v.append(val.value)

                data = GGUFData(
                    type = data.value,
                    value = v,
                    data = b''.join(d),
                )
        elif val_type == GGUFValueType.STRING:
            data = self._read_field(GGUFValueType.UINT64)
            val = self.fp.read(data.value)
            data = GGUFData(
                type = val_type,
                value = val.decode('utf-8'),
                data = data.data + val,
            )
        elif val_type in gguf_scalar_pack:
            data = self._read_field(val_type)
        else:
            raise TypeError('Unknown metadata type')

        return data

    def _update_metacount(
        self,
    ) -> None:
        old_count = self.header['metadata']
        new_count = len(self.metadata)
        self.header['metadata'] = GGUFData(
            type = old_count.type,
            value = new_count,
            data = self._pack_field(old_count.type, new_count),
        )

    def read_metadata(
        self,
    ) -> Iterator[tuple[str, GGUFData]]:
        if self.metadata:
            for k, v in self.metadata.items():
                yield k, v
        else:
            num_metadata = self.header['metadata'].value

            for _ in range(num_metadata):
                key = self._read_value(GGUFValueType.STRING)
                val_type = self._read_field(GGUFValueType.UINT32)
                val = self._read_value(val_type.value)

                self.metadata[key.value] = val = GGUFData(
                    type = val.type,
                    value = val.value,
                    data = key.data + val_type.data + val.data,
                )

                yield key.value, val

            if (alignment := self.metadata.get('general.alignment')) is not None:
                self.alignment = alignment.value

            self.metaend = self.fp.loc
            self.offset = self.metaend % self.alignment

    def adjust_padding(
        self,
    ) -> None:
        if self.header['tensors'].value == 0:
            return

        dummy_key = 'dummy.padding'
        cur_metaend = 0

        for data in self.header.values():
            cur_metaend += len(data.data)

        for k, v in self.metadata.items():
            if k != dummy_key:
                cur_metaend += len(v.data)

        if (cur_metaend % self.alignment) != self.offset:
            dummy_len = 8 + len(dummy_key) + 4 + 4 + 8
            dummy_offset = (cur_metaend + dummy_len) % self.alignment
            dummy_padding = (32 + (self.offset - dummy_offset)) % self.alignment

            self.add_metadata(dummy_key, GGUFValueType.UINT8, [0] * dummy_padding)
        else:
            self.remove_metadata(dummy_key)

    def add_metadata(
        self,
        key: str,
        type: GGUFValueType,
        value: Any,
    ) -> None:
        data = self._pack_value(GGUFValueType.STRING, key)
        data += self._pack_field(GGUFValueType.UINT32, GGUFValueType.ARRAY if isinstance(value, list) else type)
        data += self._pack_value(type, value)

        if (meta := self.metadata.get(key)):
            self.filesize -= len(meta.data)

        self.filesize += len(data)
        self.metadata[key] = GGUFData(
            type = type,
            value = value,
            data = data,
        )

        if not meta:
            self._update_metacount()

    def remove_metadata(
        self,
        key: str,
    ) -> None:
        if (meta := self.metadata.get(key)):
            del self.metadata[key]

            self.filesize -= len(meta.data)
            self._update_metacount()