Spaces:
Running
Running
File size: 47,408 Bytes
e738e15 c028c60 e738e15 5bf205a e738e15 afe8ab5 e738e15 73fd84b e738e15 ad78086 afe8ab5 e738e15 afe8ab5 e738e15 73fd84b 17252e7 73fd84b e738e15 73fd84b e738e15 73fd84b e738e15 73fd84b e738e15 73fd84b e738e15 73fd84b e738e15 73fd84b e738e15 73fd84b e738e15 73fd84b 11e4190 ad78086 c7320b2 73fd84b ad78086 73fd84b ee7df4f e738e15 73fd84b e738e15 73fd84b 17252e7 73fd84b e738e15 73fd84b 17252e7 e738e15 17252e7 e738e15 73fd84b e738e15 73fd84b 11e4190 73fd84b 11e4190 73fd84b 11e4190 73fd84b 5bf205a 73fd84b 5bf205a 73fd84b 5bf205a 73fd84b 17252e7 73fd84b e738e15 ad78086 e738e15 c028c60 e738e15 c028c60 e738e15 c028c60 c7320b2 c028c60 e738e15 c028c60 e738e15 c7320b2 e738e15 c028c60 c7320b2 c028c60 e738e15 c7320b2 e738e15 11e4190 e738e15 c7320b2 e738e15 c7320b2 e738e15 6ca68af e738e15 c7320b2 6ca68af e738e15 17252e7 e738e15 11e4190 e738e15 5bf205a e738e15 ee7df4f e738e15 5bf205a e738e15 0a3d8c5 e738e15 ad78086 ee7df4f e738e15 ee7df4f e738e15 ad78086 11e4190 ad78086 11e4190 ad78086 e738e15 ad78086 ee7df4f ad78086 ee7df4f e738e15 17252e7 e738e15 ad78086 e738e15 11e4190 e738e15 c7320b2 e738e15 c7320b2 e738e15 ad78086 e738e15 ad78086 e738e15 afe8ab5 e738e15 e54c92d 1717b3c e54c92d e738e15 ad78086 17252e7 ad78086 ffb44df ad78086 ffb44df 17252e7 ad78086 17252e7 ad78086 17252e7 ad78086 ee7df4f ad78086 ee7df4f 17252e7 ad78086 ee7df4f ad78086 ee7df4f ad78086 ee7df4f e738e15 ad78086 e738e15 17252e7 e738e15 ad78086 ffb44df ad78086 e738e15 ad78086 ee7df4f 335ca60 ee7df4f ad78086 ee7df4f ad78086 ee7df4f ad78086 ee7df4f e738e15 ad78086 e738e15 ad78086 e738e15 e54c92d e738e15 ad78086 e738e15 ad78086 e738e15 37e11f9 e738e15 60b16c5 e738e15 6716ce3 e738e15 6716ce3 e54c92d 6716ce3 e738e15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 |
import gradio as gr
import json
import posixpath
from fastapi import HTTPException, Path, Query, Request
from fastapi.responses import StreamingResponse
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import HfApi, HfFileSystem, auth_check
from typing import Annotated, Any, NamedTuple
from urllib.parse import urlencode
from _hf_explorer import FileExplorer
from _hf_gguf import standard_metadata, deprecated_metadata, TokenType, LlamaFileType, GGUFValueType, HuggingGGUFstream
hfapi = HfApi()
class MetadataState(NamedTuple):
var: dict[str, Any]
key: dict[str, tuple[int, Any]]
add: dict[str, Any]
rem: set
def init_state(
):
return MetadataState(
var = {},
key = {},
add = {},
rem = set(),
)
def human_readable_metadata(
meta: MetadataState,
key: str,
typ: int,
val: Any,
) -> tuple[str, str, Any]:
typ = GGUFValueType(typ).name
if typ == 'ARRAY':
val = '[[...], ...]'
elif isinstance(val, list):
typ = f'[{typ}][{len(val)}]'
if len(val) > 8:
val = str(val[:8])[:-1] + ', ...]'
else:
val = str(val)
elif isinstance(val, dict):
val = '[' + ', '.join((f'{k}: {v}' for k, v in val.items())) + ']'
elif key == 'general.file_type':
try:
ftype = LlamaFileType(val).name
except:
ftype = 'UNKNOWN'
val = f'{ftype} ({val})'
elif key.endswith('_token_id'):
tokens = meta.key.get('tokenizer.ggml.tokens', (-1, []))[1]
if isinstance(val, int) and val >= 0 and val < len(tokens):
val = f'{tokens[val]} ({val})'
return key, typ, val
with gr.Blocks(
) as blocks:
with gr.Tab("Editor"):
with gr.Row(
equal_height = True,
):
hf_search = HuggingfaceHubSearch(
label = "Search Huggingface Hub",
placeholder = "Search for models on Huggingface",
search_type = "model",
sumbit_on_select = True,
scale = 2,
)
hf_branch = gr.Dropdown(
None,
label = "Branch",
scale = 1,
)
gr.LoginButton(
"Sign in to access gated/private repos",
scale = 1,
)
hf_file = FileExplorer(
visible=False,
)
with gr.Row():
with gr.Column():
meta_keys = gr.Dropdown(
None,
label = "Modify Metadata",
info = "Search by metadata key name",
allow_custom_value = True,
visible = False,
)
with gr.Column():
meta_types = gr.Dropdown(
[e.name for e in GGUFValueType],
label = "Metadata Type",
info = "Select data type",
type = "index",
visible = False,
)
with gr.Column():
btn_delete = gr.Button(
"Remove Key",
variant = "stop",
visible = False,
)
meta_boolean = gr.Checkbox(
label = "Boolean",
info = "Click to update value",
visible = False,
)
with gr.Row():
meta_token_select = gr.Dropdown(
label = "Select token",
info = "Search by token name",
type = "index",
allow_custom_value = True,
visible = False,
)
meta_token_type = gr.Dropdown(
[e.name for e in TokenType],
label = "Token type",
info = "Select token type",
type = "index",
visible = False,
)
meta_lookup = gr.Dropdown(
label = "Lookup token",
info = "Search by token name",
type = "index",
allow_custom_value = True,
visible = False,
)
meta_number = gr.Number(
label = "Number",
info = "Enter to update value",
visible = False,
)
meta_string = gr.Textbox(
label = "String",
info = "Enter to update value (Shift+Enter for new line)",
show_copy_button = True,
visible = False,
)
meta_array = gr.Textbox(
None,
label = "Unsupported",
interactive = False,
visible = False,
)
meta_changes = gr.HighlightedText(
None,
label = "Metadata Changes",
color_map = {"add": "green", "rem": "red"},
interactive = False,
visible = False,
)
btn_download = gr.Button(
"Download GGUF",
variant = "primary",
visible = False,
)
file_meta = gr.Matrix(
None,
col_count = (3, "fixed"),
headers = [
"Metadata Name",
"Type",
"Value",
],
datatype = ["str", "str", "str"],
column_widths = ["35%", "15%", "50%"],
wrap = True,
interactive = False,
visible = False,
)
with gr.Tab("Help"):
gr.Markdown(
"""# Hugging Face GGUF Editor
An advanced GGUF editor, reading GGUF files directly from Hugging Face repositories and applying changes to your own copies.
Below you will find a collection of example use-cases to show you how to perform a few common GGUF editing operations:
""",
)
with gr.Column(render = False) as example_group:
example_description = gr.Markdown(
visible = False,
)
with gr.Row():
with gr.Column():
example_keys = gr.Dropdown(
allow_custom_value = True,
visible = False,
)
with gr.Column():
example_types = gr.Dropdown(
allow_custom_value = True,
visible = False,
)
with gr.Column():
example_delete = gr.Button(
interactive = False,
visible = False,
)
example_boolean = gr.Checkbox(
visible = False,
)
with gr.Row():
example_token_select = gr.Dropdown(
allow_custom_value = True,
visible = False,
)
example_token_type = gr.Dropdown(
allow_custom_value = True,
visible = False,
)
example_number = gr.Number(
visible = False,
)
example_string = gr.Textbox(
visible = False,
)
example_components = [
example_description,
example_keys,
example_types,
example_delete,
example_boolean,
example_token_select,
example_token_type,
example_number,
example_string,
]
example_defaults = {
example_description: dict(
value = "",
visible = False,
),
example_keys: dict(
value = "",
label = meta_keys.label,
info = "Select this metadata key",
visible = False,
),
example_types: dict(
value = "",
label = meta_types.label,
info = "This will have the correct type set automatically",
visible = False,
),
example_delete: dict(
value = btn_delete.value,
variant = btn_delete.variant,
visible = False,
),
example_boolean: dict(
value = False,
label = meta_boolean.label,
info = meta_boolean.info,
visible = False,
),
example_token_select: dict(
value = "",
label = meta_token_select.label,
visible = False,
),
example_token_type: dict(
value = "",
label = meta_token_type.label,
visible = False,
),
example_number: dict(
value = 0,
precision = 0,
label = meta_number.label,
info = meta_number.info,
visible = False,
),
example_string: dict(
value = "",
label = meta_string.label,
info = meta_string.info,
visible = False,
),
}
example_properties = [
dict(
label = 'Fix "missing pre-tokenizer type" warning',
outputs = {
example_description: dict(
value = """## Fixing Pre-Tokenizer warning
Custom Pre-Tokenization was added to `llama.cpp` April 29th 2024, and since then basically every model using BPE tokenization need support added to `llama.cpp` to work correctly.
Models converted using the conversion script before the support for this specific model was added will either be missing the pre-tokenizer metadata or be set incorrectly to `default`.
See the models list in [llama.cpp/convert_hf_to_gguf_update.py](https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf_update.py#L67) to find out which pre-tokenizer to choose.
Setting the correct pre-tokenizer is often enough to fix the model's tokenizer, however if it has been quantized using an `imatrix` it should be re-quantized for best performance.
Removing this metadata key from a model will cause `llama.cpp` to output a warning if BPE tokenization is used, it currently has no effect on any other tokenizers.
""",
visible = True,
),
example_keys: dict(
value = "tokenizer.ggml.pre",
visible = True,
),
example_types: dict(
value = GGUFValueType.STRING.name,
visible = True,
),
example_delete: dict(
visible = True,
),
example_string: dict(
info = "Fill in pre-tokenizer name, can be f.ex. deepseek-llm, command-r, tekken, etc. you will need to do some research to find the correct one",
value = "llama-bpe",
visible = True,
),
},
),
dict(
label = "Add missing (Fill-in-Middle, EOT, etc) or change incorrect (BOS, EOS, etc) tokens",
outputs = {
example_description: dict(
value = """## Add missing/change incorrect tokens
Sometimes converted models will be missing declarations of important tokens like EOT, Fill-in-Middle (fim_pre, fim_suf, fim_mid, fim_pad, fim_rep, fim_sep) for various reasons.
Other times they may have the incorrect tokens set as BOS, EOS, etc. Either way, missing or incorrectly declared tokens means inference will not work as expected.
Token declaration is made with the metadata key(s) named "tokenizer.ggml.`token name`\_token\_id" which contains the ID (index number) of the token in the token list (`tokenizer.ggml.tokens`).
A recurring issue is misconfigured EOS/EOT/EOM tokens, the need to set each of these and what they should be will vary between models, but the effect when these are incorrect is usually the same;
infinte generation responses, ie. inference does not know when to stop. Typically this would be because f.ex. EOS has been set to <|endoftext|> instead of <|im\_end|> (again, model specific, just an example).
Another issue, mainly for code models, is that Fill-in-Middle tokens have not been declared and not auto-detected (note; not all models have or use such tokens), causing sub-par results for filling in blanks in code/text.
There are 3 main metadata keys that need to be present for this; tokenizer.ggml.`fim_pre`\_token\_id, `fim_suf` and `fim_mid`, and 3 auxiliary ones; `fim_pad`, `fim_rep` and `fim_sep`, sometimes also EOT/EOM if it differs from EOS in this mode.
They are usually named fim\_`something` or just `PRE`, `SUF` and `MID`, take extra care with DeepSeek-based models where fim_pre is (...fim...)`begin`, fim_suf is `hole` and fim_mid is `end`.
""",
visible = True,
),
example_keys: dict(
value = "tokenizer.ggml.fim_pre_token_id",
info = "Select or enter any metadata key ending with _token_id",
visible = True,
),
example_types: dict(
value = GGUFValueType.UINT32.name,
visible = True,
),
example_token_select: dict(
value = "<fim_prefix>",
label = meta_lookup.label,
info = "You can search for the correct token by parts of its name here, then select the correct one from the list of options",
visible = True,
),
example_number: dict(
value = 92295,
info = "The token ID will be automatically filled in when you select the token, but you can also fill in the ID directly",
visible = True,
),
},
),
dict(
label = "Setting the correct token type for a token",
outputs = {
example_description: dict(
value = """## Changing a token's type
A common issue is not declaring special control tokens as such, leading to bad tokenization of them when used (usually in the chat template), causing poor responses from the model.
Take f.ex. a model with an incorrectly configured <|im\_start|> token as a normal token instead of a special control token, given the following prompt:
```
<|im_start|>Hello World<|im_end|>
```
This prompt would then be incorrectly tokenized as follows:
```
27 ('<')
91 ('|')
318 ('im')
4906 ('_start')
91 ('|')
29 ('>')
9707 ('Hello')
4337 (' World')
151645 ('<|im_end|>')
```
instead of:
```
151644 ('<|im_start|>')
9707 ('Hello')
4337 (' World')
151645 ('<|im_end|>')
```
Take care to also adjust the value for this token in `tokenizer.ggml.scores` (if it exists) similarly to other special control tokens.
**WARNING**: Even though you have the option to, you should never remove the `tokenizer.ggml.token_type` key!
""",
visible = True,
),
example_keys: dict(
value = "tokenizer.ggml.token_type",
visible = True,
),
example_types: dict(
value = GGUFValueType.INT32.name,
visible = True,
),
example_delete: dict(
visible = True,
),
example_token_select: dict(
value = "<|im_start|>",
info = "You can search for the token by parts of its name here, then select it from the list of options",
visible = True,
),
example_token_type: dict(
value = TokenType.CONTROL.name,
info = "Select the appropriate token type, in this case we set it as a special control token",
visible = True,
),
},
),
dict(
label = "Updating or adding a chat template",
outputs = {
example_description: dict(
value = """## Modifying the Chat Template
The chat template is a very important part of the model metadata as this provides a template for how to format the conversation prompt to the model.
It's not uncommon for these to have bugs (or sometimes just be plain wrong), requiring you to update them to be able to prompt the model correctly.
It's also possible to have multiple chat templates for different purposes, the main ones being RAG and Tools, but you can create any additional template you want.
The standard metadata key for RAG is `tokenizer.chat_template.rag` and Tools is `tokenizer.chat_template.tool_use`, any metadata key added starting with `tokenizer.chat_template.` will be added as a custom chat template.
Any framework based on `llama-cpp-python` will let you select which chat template to use with the `chat_format` option, available as `chat_template.default`, `chat_template.rag`, `chat_template.tool_use`, etc...
""",
visible = True,
),
example_keys: dict(
value = "tokenizer.chat_template",
info = 'Select this or enter any key starting with "tokenizer.chat_template."',
visible = True,
),
example_types: dict(
value = GGUFValueType.STRING.name,
visible = True,
),
example_delete: dict(
visible = True,
),
example_string: dict(
info = "Paste in the updated chat template or make changes here. Using [Chat Template Editor](https://huggingface.co/spaces/CISCai/chat-template-editor) is recommended",
value = "{%- for message in messages %}\n {{- '<|' + message['role'] + '|>\\n' }}\n {{- message['content'] + eos_token }}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|assistant|>\\n' }}\n{%- endif %}",
visible = True,
),
},
),
]
examples = gr.Dataset(
label = "Choose an example",
type = "index",
samples = [[]] * len(example_properties),
sample_labels = [x["label"] for x in example_properties],
)
@gr.on(
triggers = [
examples.click,
],
inputs = [
examples,
],
outputs = [
] + example_components,
show_progress = "hidden",
)
def show_example(
value: int,
):
outputs = example_properties[value]["outputs"]
non_outputs = example_components - outputs.keys()
all_outputs = dict(((k, type(k)(**(example_defaults[k] | v))) for k, v in outputs.items()))
for output in non_outputs:
all_outputs[output] = type(output)(**example_defaults[output])
return all_outputs
for k, v in example_defaults.items():
for prop, val in v.items():
setattr(k, prop, val)
example_group.render()
meta_state = gr.State() # init_state
# BUG: For some reason using gr.State initial value turns tuple to list?
meta_state.value = init_state()
token_select_indices = gr.State([])
file_change_components = [
meta_changes,
file_meta,
meta_keys,
btn_download,
]
state_change_components = [
meta_state,
] + file_change_components
@gr.on(
triggers = [
hf_search.submit,
],
inputs = [
hf_search,
],
outputs = [
hf_branch,
],
)
def get_branches(
repo: str,
oauth_token: gr.OAuthToken | None = None,
):
branches = []
try:
refs = hfapi.list_repo_refs(
repo,
token = oauth_token.token if oauth_token else False,
)
branches = [b.name for b in refs.branches]
except Exception as e:
pass
return {
hf_branch: gr.Dropdown(
branches or None,
value = "main" if "main" in branches else None,
),
}
@gr.on(
triggers = [
hf_search.submit,
hf_branch.input,
],
inputs = [
hf_search,
hf_branch,
],
outputs = [
hf_file,
meta_types,
btn_delete,
meta_boolean,
meta_token_select,
meta_token_type,
meta_lookup,
meta_number,
meta_string,
meta_array,
] + file_change_components,
)
def get_files(
repo: str,
branch: str | None,
oauth_token: gr.OAuthToken | None = None,
):
try:
auth_check(repo, token=oauth_token.token if oauth_token else False)
except Exception as e:
gr.Warning(str(e))
return {
hf_file: FileExplorer(
root_dir = None,
visible = False,
),
meta_changes: gr.HighlightedText(
visible = False,
),
file_meta: gr.Matrix(
visible = False,
),
meta_keys: gr.Dropdown(
visible = False,
),
btn_download: gr.Button(
visible = False,
),
meta_types: gr.Dropdown(
visible = False,
),
btn_delete: gr.Button(
visible = False,
),
meta_boolean: gr.Checkbox(
visible = False,
),
meta_token_select: gr.Dropdown(
visible = False,
),
meta_token_type: gr.Dropdown(
visible = False,
),
meta_lookup: gr.Dropdown(
visible = False,
),
meta_number: gr.Number(
visible = False,
),
meta_string: gr.Textbox(
visible = False,
),
meta_array: gr.Textbox(
visible = False,
),
}
return {
hf_file: FileExplorer(
"**/*.gguf",
file_count = "single",
root_dir = repo,
branch = branch,
token = oauth_token.token if oauth_token else False,
visible = True,
),
meta_changes: gr.HighlightedText(
None,
visible = False,
),
file_meta: gr.Matrix(
None,
visible = False,
),
meta_keys: gr.Dropdown(
None,
visible = False,
),
btn_download: gr.Button(
visible = False,
),
meta_types: gr.Dropdown(
visible = False,
),
btn_delete: gr.Button(
visible = False,
),
meta_boolean: gr.Checkbox(
visible = False,
),
meta_token_select: gr.Dropdown(
visible = False,
),
meta_token_type: gr.Dropdown(
visible = False,
),
meta_lookup: gr.Dropdown(
visible = False,
),
meta_number: gr.Number(
visible = False,
),
meta_string: gr.Textbox(
visible = False,
),
meta_array: gr.Textbox(
visible = False,
),
}
@gr.on(
triggers = [
hf_file.change,
],
inputs = [
hf_file,
hf_branch,
],
outputs = [
meta_state,
meta_types,
btn_delete,
meta_boolean,
meta_token_select,
meta_token_type,
meta_lookup,
meta_number,
meta_string,
meta_array,
] + file_change_components,
show_progress = 'minimal',
)
def load_metadata(
repo_file: str | None,
branch: str | None,
progress: gr.Progress = gr.Progress(),
oauth_token: gr.OAuthToken | None = None,
):
m = []
deferred_updates = []
meta = init_state()
yield {
meta_state: meta,
file_meta: gr.Matrix(
None,
visible = True,
),
meta_changes: gr.HighlightedText(
None,
visible = False,
),
meta_keys: gr.Dropdown(
None,
visible = False,
),
btn_download: gr.Button(
visible = False,
),
meta_types: gr.Dropdown(
visible = False,
),
btn_delete: gr.Button(
visible = False,
),
meta_boolean: gr.Checkbox(
visible = False,
),
meta_token_select: gr.Dropdown(
visible = False,
),
meta_token_type: gr.Dropdown(
visible = False,
),
meta_lookup: gr.Dropdown(
visible = False,
),
meta_number: gr.Number(
visible = False,
),
meta_string: gr.Textbox(
visible = False,
),
meta_array: gr.Textbox(
visible = False,
),
}
if not repo_file:
return
fs = HfFileSystem(
token = oauth_token.token if oauth_token else None,
)
try:
progress(0, desc = 'Loading file...')
with fs.open(
repo_file,
"rb",
revision = branch,
block_size = 8 * 1024 * 1024,
cache_type = "readahead",
) as fp:
progress(0, desc = 'Reading header...')
gguf = HuggingGGUFstream(fp)
num_metadata = gguf.header['metadata'].value
metadata = gguf.read_metadata()
meta.var['repo_file'] = repo_file
meta.var['branch'] = branch
for k, v in progress.tqdm(metadata, desc = 'Reading metadata...', total = num_metadata, unit = f' of {num_metadata} metadata keys...'):
human = [*human_readable_metadata(meta, k, v.type, v.value)]
if k.endswith('_token_id') and 'tokenizer.ggml.tokens' not in meta.key:
deferred_updates.append(((k, v.type, v.value), human))
m.append(human)
meta.key[k] = (v.type, v.value)
yield {
file_meta: gr.Matrix(
m,
),
}
for data, human in deferred_updates:
human[:] = human_readable_metadata(meta, *data)
except Exception as e:
gr.Warning(
title = 'Loading error!',
message = str(e),
duration = None,
)
return
yield {
meta_state: meta,
meta_keys: gr.Dropdown(
sorted(meta.key.keys() | standard_metadata.keys()),
value = '',
visible = True,
),
file_meta: gr.skip() if not deferred_updates else gr.Matrix(
m,
),
}
@gr.on(
triggers = [
meta_keys.change,
],
inputs = [
meta_state,
meta_keys,
],
outputs = [
meta_keys,
meta_types,
btn_delete,
],
)
def update_metakey(
meta: MetadataState,
key: str | None,
):
typ = None
if (val := meta.key.get(key, standard_metadata.get(key))) is not None:
typ = GGUFValueType(val[0]).name
elif key:
if key.startswith('tokenizer.chat_template.'):
typ = GGUFValueType.STRING.name
elif key.endswith('_token_id'):
typ = GGUFValueType.UINT32.name
return {
meta_keys: gr.Dropdown(
info = "DEPRECATED" if key in deprecated_metadata else "Search by metadata key name",
),
meta_types: gr.Dropdown(
value = typ,
interactive = False if typ is not None else True,
visible = True if key else False,
),
btn_delete: gr.Button(
visible = True if key in meta.key else False,
),
}
@gr.on(
triggers = [
meta_keys.change,
meta_types.input,
],
inputs = [
meta_state,
meta_keys,
meta_types,
],
outputs = [
meta_boolean,
meta_token_select,
meta_token_type,
meta_lookup,
meta_number,
meta_string,
meta_array,
],
)
def update_metatype(
meta: MetadataState,
key: str,
typ: int,
):
val = None
tokens = meta.key.get('tokenizer.ggml.tokens', (-1, []))[1]
if (data := meta.key.get(key, standard_metadata.get(key))) is not None:
typ = data[0]
val = data[1]
elif not key:
typ = None
do_select_token = False
do_lookup_token = False
do_token_type = False
do_chat_template = False
match key:
case 'tokenizer.ggml.scores':
do_select_token = True
case 'tokenizer.ggml.token_type':
do_select_token = True
do_token_type = True
case s if s.endswith('_token_id'):
do_lookup_token = True
case s if s == 'tokenizer.chat_template' or s.startswith('tokenizer.chat_template.'):
do_chat_template = True
case _:
pass
if isinstance(val, list) and not do_select_token:
# TODO: Support arrays?
typ = GGUFValueType.ARRAY
match typ:
case GGUFValueType.INT8 | GGUFValueType.INT16 | GGUFValueType.INT32 | GGUFValueType.INT64 | GGUFValueType.UINT8 | GGUFValueType.UINT16 | GGUFValueType.UINT32 | GGUFValueType.UINT64 | GGUFValueType.FLOAT32 | GGUFValueType.FLOAT64:
is_number = True
case _:
is_number = False
return {
meta_boolean: gr.Checkbox(
value = val if typ == GGUFValueType.BOOL and data is not None else False,
visible = True if typ == GGUFValueType.BOOL else False,
),
meta_token_select: gr.Dropdown(
None,
value = '',
visible = True if do_select_token else False,
),
meta_token_type: gr.Dropdown(
interactive = False,
visible = True if do_token_type else False,
),
meta_lookup: gr.Dropdown(
None,
value = tokens[val] if is_number and data is not None and do_lookup_token and val < len(tokens) else '',
visible = True if is_number and do_lookup_token else False,
),
meta_number: gr.Number(
value = val if is_number and data is not None and not do_select_token else None,
precision = 10 if typ == GGUFValueType.FLOAT32 or typ == GGUFValueType.FLOAT64 else 0,
interactive = False if do_select_token else True,
visible = True if is_number and not do_token_type else False,
),
meta_string: gr.Textbox(
value = val if typ == GGUFValueType.STRING else '',
info = "Use [Chat Template Editor](https://huggingface.co/spaces/CISCai/chat-template-editor) to edit/test the template, then paste the result here (press Enter to update value)" if do_chat_template else example_defaults[example_string]["info"],
visible = True if typ == GGUFValueType.STRING else False,
),
meta_array: gr.Textbox(
visible = True if typ == GGUFValueType.ARRAY else False,
),
}
@gr.on(
triggers = [
file_meta.select,
],
inputs = [
],
outputs = [
meta_keys,
],
)
def select_metakey(
evt: gr.SelectData,
):
return {
meta_keys: gr.Dropdown(
value = evt.row_value[0] if evt.selected else '',
),
}
def notify_state_change(
meta: MetadataState,
request: gr.Request,
):
changes = [(k, 'rem') for k in meta.rem]
for k, v in meta.add.items():
key, typ, val = human_readable_metadata(meta, k, *v)
changes.append((k, 'add'))
changes.append((str(val), None))
m = []
for k, v in meta.key.items():
m.append([*human_readable_metadata(meta, k, v[0], v[1])])
link = str(request.request.url_for('download', repo_file = meta.var['repo_file']).include_query_params(branch = meta.var['branch'], session = request.session_hash, state = str(meta_state._id)))
if link.startswith('http:'):
link = 'https' + link[4:]
# if meta.rem or meta.add:
# link += '&' + urlencode(
# {
# 'rem': meta.rem,
# 'add': [json.dumps([k, *v], ensure_ascii = False, separators = (',', ':')) for k, v in meta.add.items()],
# },
# doseq = True,
# safe = '[]{}:"\',',
# )
return {
meta_state: meta,
meta_changes: gr.HighlightedText(
changes,
visible = True if changes else False,
),
file_meta: gr.Matrix(
m,
),
meta_keys: gr.Dropdown(
sorted(meta.key.keys() | standard_metadata.keys()),
value = '',
),
btn_download: gr.Button(
link = link,
visible = True if changes else False,
),
}
@gr.on(
triggers = [
btn_delete.click,
],
inputs = [
meta_state,
meta_keys,
],
outputs = [
] + state_change_components,
)
def rem_metadata(
meta: MetadataState,
key: str,
request: gr.Request,
):
if key in meta.add:
del meta.add[key]
if key in meta.key:
del meta.key[key]
meta.rem.add(key)
return notify_state_change(
meta,
request,
)
def token_search(
meta: MetadataState,
name: str,
):
found = {}
name = name.lower()
tokens = meta.key.get('tokenizer.ggml.tokens', (-1, []))[1]
any(((len(found) > 5, found.setdefault(i, t))[0] for i, t in enumerate(tokens) if name in t.lower()))
return found
@gr.on(
triggers = [
meta_token_select.key_up,
],
inputs = [
meta_state,
],
outputs = [
meta_token_select,
token_select_indices,
],
show_progress = 'hidden',
trigger_mode = 'always_last',
)
def token_select(
meta: MetadataState,
keyup: gr.KeyUpData,
):
if not keyup.input_value:
return gr.skip()
found = token_search(meta, keyup.input_value)
return {
meta_token_select: gr.Dropdown(
list(found.values()),
),
token_select_indices: list(found.keys()),
}
@gr.on(
triggers = [
meta_token_select.input,
],
inputs = [
meta_state,
meta_keys,
meta_token_select,
token_select_indices,
],
outputs = [
meta_token_type,
meta_number,
],
)
def token_selected(
meta: MetadataState,
key: str,
choice: int | None,
indices: list[int],
):
if choice is None or choice < 0 or choice >= len(indices) or (token := indices[choice]) < 0:
gr.Warning(
title = 'Error',
message = 'Token not found',
)
return gr.skip()
tokens = meta.key.get('tokenizer.ggml.tokens', (-1, []))[1]
if token >= len(tokens):
gr.Warning(
title = 'Error',
message = 'Invalid token',
)
return gr.skip()
data = meta.key.get(key, (-1, []))[1]
match key:
case 'tokenizer.ggml.scores':
return {
meta_number: gr.Number(
value = data[token] if data and len(data) > token else 0.0,
interactive = True,
),
}
case 'tokenizer.ggml.token_type':
return {
meta_token_type: gr.Dropdown(
value = TokenType(data[token]).name if data and len(data) > token else TokenType.NORMAL.name,
interactive = True,
),
}
case _:
gr.Warning(
title = 'Error',
message = 'Invalid metadata key',
)
return gr.skip()
@gr.on(
triggers = [
meta_lookup.key_up,
],
inputs = [
meta_state,
],
outputs = [
meta_lookup,
token_select_indices,
],
show_progress = 'hidden',
trigger_mode = 'always_last',
)
def token_lookup(
meta: MetadataState,
keyup: gr.KeyUpData,
):
if not keyup.input_value:
return gr.skip()
found = token_search(meta, keyup.input_value)
return {
meta_lookup: gr.Dropdown(
list(found.values()),
),
token_select_indices: list(found.keys()),
}
def add_metadata(
meta: MetadataState,
key: str,
typ: int | None,
val: Any,
request: gr.Request,
choice: int | None = None,
indices: list[int] | None = None,
):
if not key or typ is None:
if key:
gr.Warning('Missing required value type')
return gr.skip()
if key in meta.rem:
meta.rem.remove(key)
match key:
case 'tokenizer.ggml.scores' | 'tokenizer.ggml.token_type':
if choice is None or choice < 0 or choice >= len(indices) or (token := indices[choice]) < 0:
raise gr.Error('Token not found')
tok = meta.add.setdefault(key, (typ, {}))[1]
tok[str(token)] = val + 1 if key == 'tokenizer.ggml.token_type' else val
data = meta.key.setdefault(key, (typ, [0.0 if key == 'tokenizer.ggml.scores' else int(TokenType.NORMAL)] * len(meta.key.get('tokenizer.ggml.tokens', (-1, []))[1])))[1]
if data:
for k, v in tok.items():
data[int(k)] = v
case _:
meta.key[key] = meta.add[key] = (typ, val)
if key.startswith('tokenizer.chat_template.'):
template = key[24:]
if template not in meta.key.get('tokenizer.chat_templates', []):
templates = [x[24:] for x in meta.key.keys() if x.startswith('tokenizer.chat_template.')]
meta.key['tokenizer.chat_templates'] = meta.add['tokenizer.chat_templates'] = (GGUFValueType.STRING, templates)
return notify_state_change(
meta,
request,
)
def token_select_to_id(
choice: int,
indices: list[int],
):
if choice is None or choice < 0 or choice >= len(indices) or (token := indices[choice]) < 0:
raise gr.Error('Token not found')
return {
meta_number: gr.Number(
token,
),
}
meta_lookup.input(
token_select_to_id,
inputs = [
meta_lookup,
token_select_indices,
],
outputs = [
meta_number,
],
).success(
add_metadata,
inputs = [
meta_state,
meta_keys,
meta_types,
meta_number,
],
outputs = [
] + state_change_components,
)
meta_boolean.input(
add_metadata,
inputs = [
meta_state,
meta_keys,
meta_types,
meta_boolean,
],
outputs = [
] + state_change_components,
)
meta_token_type.input(
add_metadata,
inputs = [
meta_state,
meta_keys,
meta_types,
meta_token_type,
meta_token_select,
token_select_indices,
],
outputs = [
] + state_change_components,
)
meta_number.submit(
add_metadata,
inputs = [
meta_state,
meta_keys,
meta_types,
meta_number,
meta_token_select,
token_select_indices,
],
outputs = [
] + state_change_components,
)
meta_string.submit(
add_metadata,
inputs = [
meta_state,
meta_keys,
meta_types,
meta_string,
],
outputs = [
] + state_change_components,
)
meta_array.input(
add_metadata,
inputs = [
meta_state,
meta_keys,
meta_types,
meta_array,
],
outputs = [
] + state_change_components,
)
def stream_repo_file(
repo_file: str,
branch: str,
add_meta: list[Any] | None,
rem_meta: list[str] | None,
token: str | None = None,
):
fs = HfFileSystem(
token = token,
)
with fs.open(
repo_file,
"rb",
revision = branch,
block_size = 8 * 1024 * 1024,
cache_type = "readahead",
) as fp:
if not rem_meta:
rem_meta = []
if not add_meta:
add_meta = []
gguf = HuggingGGUFstream(fp)
for _ in gguf.read_metadata():
pass
for k in rem_meta:
gguf.remove_metadata(k)
tokens = gguf.metadata.get('tokenizer.ggml.tokens')
for k in add_meta:
if isinstance(k, list) and len(k) == 3:
if isinstance(k[2], dict):
if tokens:
if (data := gguf.metadata.get(k[0])):
data = data.value
else:
data = [0.0 if k[0] == 'tokenizer.ggml.scores' else int(TokenType.NORMAL)] * len(tokens.value)
for i, v in k[2].items():
data[int(i)] = v
k[2] = data
else:
k[2] = []
gguf.add_metadata(*k)
gguf.adjust_padding()
yield gguf.filesize
yield b''.join((v.data for k, v in gguf.header.items()))
for k, v in gguf.metadata.items():
yield v.data
while True:
if not (data := fp.read(65536)):
break
yield data
if __name__ == "__main__":
blocks.queue(
max_size = 10,
default_concurrency_limit = 10,
)
app, local_url, share_url = blocks.launch(
ssr_mode = False,
show_api = False,
prevent_thread_lock = True,
)
async def download(
request: Request,
repo_file: Annotated[str, Path()],
branch: Annotated[str, Query()] = "main",
add: Annotated[list[str] | None, Query()] = None,
rem: Annotated[list[str] | None, Query()] = None,
session: Annotated[str | None, Query()] = None,
state: Annotated[int | None, Query()] = None,
):
token = request.session.get('oauth_info', {}).get('access_token')
if posixpath.normpath(repo_file) != repo_file or '\\' in repo_file or repo_file.startswith('../') or repo_file.startswith('/') or repo_file.count('/') < 2:
raise HTTPException(
status_code = 404,
detail = 'Invalid repository',
)
if session and state is not None and session in request.app.state_holder and state in request.app.state_holder[session]:
meta: MetadataState = request.app.state_holder[session][state]
if meta.rem:
rem = list(meta.rem)
if meta.add:
add = [[k, *v] for k, v in meta.add.items()]
elif add:
add = [json.loads(a) for a in add]
stream = stream_repo_file(
repo_file,
branch,
add,
rem,
token = token,
)
size = next(stream)
return StreamingResponse(
stream,
headers = {
'Content-Length': str(size),
},
media_type = 'application/octet-stream',
)
app.add_api_route(
"/download/{repo_file:path}",
download,
methods = ["GET"],
)
# app.openapi_schema = None
# app.setup()
blocks.block_thread()
|