Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import TextIteratorStreamer | |
from threading import Thread | |
from transformers import StoppingCriteria, StoppingCriteriaList | |
import torch | |
import spaces | |
model_name = "microsoft/Phi-3-mini-128k-instruct" | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='cuda', trust_remote_code=True) | |
model = model.to('cuda:0') | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def predict(message, history): | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
messages = "".join(["".join(["<|end|>\n<|user|>\n"+item[0], "<|end|>\n<|assistant|>\n"+item[1]]) for item in history_transformer_format]) | |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=4096, | |
do_sample=True, | |
top_p=0.9, | |
top_k=40, | |
temperature=0.9, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
demo = gr.ChatInterface(fn=predict, examples=["What is life?"], title="AI", fill_height=True) | |
demo.launch(show_api=False) |