Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,15 @@
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import torch
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
peft_model_id = "CMLM/ZhongJing-2-1_8b"
|
10 |
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
|
11 |
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
|
@@ -17,47 +21,85 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
17 |
pad_token=''
|
18 |
)
|
19 |
|
20 |
-
|
21 |
-
|
|
|
22 |
prompt = f"Question: {question}"
|
23 |
messages = [
|
24 |
{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."},
|
25 |
{"role": "user", "content": prompt}
|
26 |
]
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
tokenize=False,
|
32 |
-
add_generation_prompt=True
|
33 |
-
)
|
34 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
35 |
-
|
36 |
-
# Generate the response
|
37 |
-
generated_ids = model.generate(
|
38 |
-
model_inputs.input_ids,
|
39 |
-
max_new_tokens=512
|
40 |
-
)
|
41 |
-
generated_ids = [
|
42 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
43 |
-
]
|
44 |
-
|
45 |
-
# Decode the response
|
46 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
47 |
return response
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
|
|
56 |
inputs=["text"],
|
57 |
outputs="text",
|
58 |
-
title="仲景GPT-V2-1.8B",
|
59 |
description="博极医源,精勤不倦。Unlocking the Wisdom of Traditional Chinese Medicine with AI."
|
60 |
)
|
61 |
|
62 |
-
#
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
+
import os
|
6 |
|
7 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"
|
8 |
+
USE_CUDA = torch.cuda.is_available()
|
9 |
+
device_ids_parallel = [0]
|
10 |
+
device = torch.device("cuda:{}".format(device_ids_parallel[0]) if USE_CUDA else "cpu")
|
11 |
|
12 |
+
# 初始化
|
13 |
peft_model_id = "CMLM/ZhongJing-2-1_8b"
|
14 |
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
|
15 |
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
|
|
|
21 |
pad_token=''
|
22 |
)
|
23 |
|
24 |
+
#单轮
|
25 |
+
@spaces.GPU
|
26 |
+
def single_turn_chat(question):
|
27 |
prompt = f"Question: {question}"
|
28 |
messages = [
|
29 |
{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."},
|
30 |
{"role": "user", "content": prompt}
|
31 |
]
|
32 |
+
input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
33 |
+
model_inputs = tokenizer([input], return_tensors="pt").to(device)
|
34 |
+
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)
|
35 |
+
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
37 |
return response
|
38 |
|
39 |
+
#多轮
|
40 |
+
@spaces.GPU
|
41 |
+
def multi_turn_chat(question, chat_history=None):
|
42 |
+
if not isinstance(question, str):
|
43 |
+
raise ValueError("The question must be a string.")
|
44 |
+
|
45 |
+
if chat_history is None or chat_history == []:
|
46 |
+
chat_history = [{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."}]
|
47 |
+
|
48 |
+
chat_history.append({"role": "user", "content": question})
|
49 |
+
|
50 |
+
# Apply the chat template and prepare the input
|
51 |
+
inputs = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
|
52 |
+
model_inputs = tokenizer([inputs], return_tensors="pt").to(device)
|
53 |
+
|
54 |
+
try:
|
55 |
+
# Generate the response from the model
|
56 |
+
outputs = model.generate(model_inputs.input_ids, max_new_tokens=512)
|
57 |
+
generated_ids = outputs[:, model_inputs.input_ids.shape[-1]:]
|
58 |
+
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
59 |
+
except Exception as e:
|
60 |
+
raise RuntimeError("Error in model generation: " + str(e))
|
61 |
+
|
62 |
+
# Append the assistant's response to the chat history
|
63 |
+
chat_history.append({"role": "assistant", "content": response})
|
64 |
+
|
65 |
+
# Format the chat history for output
|
66 |
+
tempass = ""
|
67 |
+
tempuser = ""
|
68 |
+
formatted_history = []
|
69 |
+
for entry in chat_history:
|
70 |
+
if entry['role'] == 'user':
|
71 |
+
tempuser = entry['content']
|
72 |
+
elif entry['role'] == 'assistant':
|
73 |
+
tempass = entry['content']
|
74 |
+
temp = (tempuser, tempass)
|
75 |
+
formatted_history.append(temp)
|
76 |
+
|
77 |
+
return formatted_history, chat_history
|
78 |
+
|
79 |
+
def clear_history():
|
80 |
+
return [], []
|
81 |
|
82 |
+
# 单轮界面
|
83 |
+
single_turn_interface = gr.Interface(
|
84 |
+
fn=single_turn_chat,
|
85 |
inputs=["text"],
|
86 |
outputs="text",
|
87 |
+
title="仲景GPT-V2-1.8B 单轮对话",
|
88 |
description="博极医源,精勤不倦。Unlocking the Wisdom of Traditional Chinese Medicine with AI."
|
89 |
)
|
90 |
|
91 |
+
# 多轮界面
|
92 |
+
with gr.Blocks() as multi_turn_interface:
|
93 |
+
chatbot = gr.Chatbot(label="仲景GPT-V2-1.8B 多轮对话")
|
94 |
+
state = gr.State([])
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column(scale=6):
|
97 |
+
user_input = gr.Textbox(label="输入", placeholder="输入你的问题")
|
98 |
+
with gr.Column(scale=6):
|
99 |
+
submit_button = gr.Button("发送")
|
100 |
+
|
101 |
+
submit_button.click(multi_turn_chat, [user_input, state], [chatbot, state])
|
102 |
+
user_input.submit(multi_turn_chat, [user_input, state], [chatbot, state])
|
103 |
+
|
104 |
+
single_turn_interface.launch()
|
105 |
+
multi_turn_interface.launch()
|